

ХАРАКТЕРИЗАЦИЯ НУМЕРОВАННОЙ ГРУПП

Шарипов Фарход МуродуллаевичНамГУ Учитель

Аннотация. На этом тезисе просмотрена, что в каких случаях группы называется вычислимо отделимых групп.

Ключевые слова: вычислимость, негативность, нумерованной группой, локально негативной, локально позитивной, вычислимо отделимой

В работе [3] развит теория вычислимо отделимых нумерованных алгебр. Модели являются естественном обобщением алгебр. В [4] дана структурная характеризация вычислимо отделимых моделей. Очень важно изучать эффективные свойства нумерованных алгебраических классических систем, таких как группы и кольца. В данной работе рассматривается равномерно вычислимо отделимые группы и получены аналогичные результаты для конкретных алгебр, а именно для нумерованных групп.

Все неопределяемые понятия можно найти в [1-4].

Если в определении вычислимой отделимости модели потребовать наличие эффективного процесса построения для отделяющего множества по элементу $\bar{x} \in \omega^{\mu(P)}$ и по номеру предикатного символа P, то получим понятие равномерно вычислимо отделимой модели.

Для групп формально дадим следующее определение.

Определение 1. Нумерованной группой называется пара (G, v), где G группа с операцией "*", $v: G \to \omega$ — отображение со следующим свойством:

Для "*" бинарной операции существует такая вычислимая функция f на множестве натуральных чисел ω , что $vn*vm=v\bigg(f\bigg(n,m\bigg)\bigg)$.

Если нумерация v вычислимом (позитивном, негативном), то нумерованная группа (G,v) называется вычислимом (позитивном, негативном). Нумерация v назовем позитивной (негативной), если η_{v} ($\omega^{2} \setminus \eta_{v}$) вычислимо перечислимо. Нумерация v назовем вычислимой, если отношение η_{v} вычислимо. Нумерационная эквивалентность $\eta_{v} = \{\langle x, y \rangle / vx = vy \}$.

Определение 2. Нумерованная группа называется вычислимо отделимой, если таковой является её нумерационная эквивалентность.

Следующая теорема показывает, что негативные группы являются важными неочевидными примерами вычислимо отделимых группой.

Теорема 1. Всякая негативная группа (G, v) является вычислимо отделимой нумерованной группой.

Доказательство. Обозначим через $[\]_{\nu}$, оператор ν — замыкания нумерационной эквивалентности η_{ν} , т.е. $[\alpha]_{\nu}$ есть наименьшее ν — замкнутое множество, содержащее α . Будем говорить, что натуральное число Z отвергается множеством α , если $Z \notin [\alpha]_{\nu}$, т.е. $\nu_Z \neq \nu_\alpha$, произвольное $\alpha \in \alpha$.

Пусть $va \neq vb$, v — замкнутое, вычислимое множество a отделяющее a от b построим следующем образом:

Шаг 0:
$$\alpha^0 = \{a\}$$
, $\beta^0 = \{b\}$
Шаг 1: $v0 \neq va$ $\beta^1 = \beta^0 \cup \{0\}$, $\alpha^1 = \alpha^0$;

$$v0 \neq vb \ \alpha^1 = \alpha^0 \cup \{0\}, \ \beta^1 = \beta^0.$$

Шаг е + 1: Выбираем первую встречающую $z \in \omega$, не принадлежащую $\alpha^e \cup \beta^e$ начинаем проверять «z на предмет отвержения каждым из этих множеств». Если z отвергается α^e , то полагаем

$$\alpha^{e+1} = \alpha^e$$
, $\beta^{e+1} = \beta^e \cup \{z\}$.

Если z отвергается β^e $\alpha^{e+1} = \alpha^e \cup \{z\}$ если не так, то когда-нибудь z отвергается α^e и $\alpha^{e+1} = \alpha^e$, $\beta^{e+1} = \beta^e \cup \{z\}$. Потому что в силу негативности ν отношение «z отвергается множеством α^e (или β^e)» является вычислимо перечислимым.

Положим
$$\alpha = \bigcup_{e \ge 0} \alpha^e$$
, $\beta = \bigcup_{e \ge 0} \beta^e$.

Если дополнение вычислимо перечислимое множество является вычислимо перечислимо, тогда эти множество вычислимо. Отсюда вытекает, что $\alpha \cup \beta = \omega$, α вычислимо перечислимо, и β тоже является вычислимо перечислимо, тогда эти множества будет вычислимо. Теперь проверим, что α является v- замкнутым. Пусть $u \in \alpha$ и vv = vu, если u < v, то для некоторого e имеем $u \in \alpha^e$, $v \notin \alpha^e \cup \beta^e$. Тогда v не отвергается множество v ни на каком шаге, а значит v отвергается на некотором шаге $v \in \alpha^e$ множеством $v \in \alpha^e$. Если $v \in \alpha^e$. Так как в противном случае и не отвергается $v \in \alpha^e$, но тогда $v \in \alpha^e$. Противоречие. Следовательно, $v \in \alpha^e$ замкнутое вычислимое множество. Теорема доказано.

Следующая теорема характеризирует вычислимо отделимые группы.

Теорема 2. Нумерованная группа вычислимо отделимо тогда и только тогда, когда она аппроксимируется негативными группами.

ЛИТЕРАТУРА

- 1. Мальцев А. И. Конструктивные алгебры. І. // УМН. 1961. Т. 16. №3 С. 3–60.
- 2. Роджер X. Теория рекурсивных функций и эффективная вычислимость. М.: Мир, 1972. 624 с.
- 3. Казымов Н.Х. Рекурсивно отделимые нумерованные алгебры // УМН. 1996. Т.51. №3 С. 145–176.
- 4. Ибрагимов Ф.Н. К теории рекурсивно отделимых моделях. // Вестник НУ Уз. -2006. -№2. C. 23 27.