
 ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ  ИДЕИ В МИРЕ       

     http://www.newjournal.org/                                                          Выпуск журнала № – 23  

Часть–5_ Июнь –2023                      
138 

2181-3187 

THE METHOD OF MATHEMATICAL INDUCTION FOR 

DIOPHANTINE EQUATIONS 

                                        

Kamoliddinov Davlatjon Utkirkhan ugli 

Samarkand state university named after Sharof Rashidov 

kamoliddinovdavlatjon@gmail.com 

                                                 

Abstract: It is known that the mathematical induction method has several 
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Introduction 

Mathematical induction is a powerful and elegant method for proving statements 

depending on nonnegative integers. 

   Let (𝑃(𝑛)) 𝑛≥0 be a sequence of propositions. The method of mathematical 

induction assists us in proving that 𝑃(𝑛) is true for all  𝑛 ≥ 𝑛0, where 𝑛0 is a given 

nonnegative integer. 

   Mathematical Induction (weak form): Suppose that:  

• 𝑃(𝑛0) is true; 

• For all  𝑘 ≥ 𝑛0, 𝑃(𝑘) is true implies 𝑃(𝑘 + 1) is true. 

Then P(n) is true for all 𝑛 ≥ 𝑛0. 

Mathematical Induction: Let s be a fixed positive integer. Suppose that: 

• 𝑃(𝑛0), 𝑃(𝑛0 + 1),..., 𝑃(𝑛0 + 𝑠 − 1)  are true;  

• For all 𝑘 ≥ 𝑛0, 𝑃(𝑘)  is true implies 𝑃(𝑘 + 𝑠) is true. 

Then P(n) is true for all 𝑛 ≥ 𝑛0. 

Mathematical Induction (strong form): Suppose that  

• 𝑃(𝑛0) is true;  

• For all  𝑘 ≥ 𝑛0,  𝑃(𝑚) is true for all m with  𝑛0 ≤ 𝑚 ≤ 𝑘 implies  𝑃(𝑘 + 1) is 

true.  

Then 𝑃(𝑛) is true for all  𝑛 ≥ 𝑛0. 

   This method of proof is widely used in various areas of mathematics, including 

number theory. The following examples are meant to show how mathematical 

induction works in studying Diophantine equations. 

   Example 1. Prove that for all integers  𝑛 ≥ 3, there exist odd positive integer 

𝑥, 𝑦, such that  7𝑥2 + 𝑦2 = 𝑛2. 
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                                                                           (Bulgarian Mathematical 

Olympiad)  

   Solution. We will prove that there exist odd positive integers     𝑥𝑛,  𝑦𝑛    such  

that  

7𝑥𝑛
2 + 𝑦𝑛

2 = 2𝑛. 

   For 𝑛 = 3, we have 𝑥3 = 𝑦3 = 1. Now suppose that for a given integer 𝑛 ≥ 3 

we have odd integers   𝑥𝑛, 𝑦𝑛  satisfying  7𝑥2 + 𝑦2 = 𝑛2. We shall exhibit a pair 

(𝑥𝑛+1 , 𝑦𝑛+1)  of odd positive integers such that 7𝑥𝑛+1
2 + 𝑦𝑛+1

2 = 2𝑛+1. In fact, 

7 (
𝑥𝑛 ± 𝑦𝑛
2

)
2

+ (
7𝑥𝑛 + 𝑦𝑛

2
)
2

= 2(7𝑥𝑛
2 + 𝑦𝑛

2) = 2𝑛+1. 

   Precisely one of the numbers 
𝑥𝑛+𝑦𝑛

2
 and 

|𝑥𝑛−𝑦𝑛|

2
 is odd (since their sum is the 

larger of  𝑥𝑛 and  𝑦𝑛, which is odd). If, for example,    
𝑥𝑛+𝑦𝑛

2
   is odd, then 

7𝑥𝑛 − 𝑦𝑛
2

= 3𝑥𝑛 +
𝑥𝑛 − 𝑦𝑛
2

 

is also odd (as a sum of an odd and an even number); hence in this case we may 

choose 

𝑥𝑛+1 =
𝑥𝑛+𝑦𝑛

2
              and        𝑦𝑛+1 =

7𝑥𝑛−𝑦𝑛

2
 . 

    If    
𝑥𝑛−𝑦𝑛

2
  is odd, then  

7𝑥𝑛 + 𝑦𝑛
2

= 3𝑥𝑛 +
𝑥𝑛 + 𝑦𝑛
2

 

so we can choose    

𝑥𝑛+1 =
|𝑥𝑛−𝑦𝑛|

2
            and        𝑦𝑛+1 =

7𝑥𝑛+𝑦𝑛

2
 

   Example 2. Prove that for all positive integers  𝑛, the equation 

𝑥2 + 𝑦2 + 𝑧2 = 59𝑛 

is solvable in positive integers. 

   Solution. We use mathematical induction with pace 𝑠 = 2 and  𝑛0 = 1. Note 

that for (𝑥1, 𝑦1, 𝑧1) = (1,3,7) and  (𝑥2, 𝑦2, 𝑧2) = (14,39,42) we have 

𝑥1
2 + 𝑦1

2 + 𝑧1
2 = 59      and      𝑥2

2 + 𝑦2
2 + 𝑧2

2 = 592. 

   Define now   (𝑥𝑛 , 𝑦𝑛, 𝑧𝑛), 𝑛 ≥ 3  , by 

𝑥𝑛+2 = 59𝑥𝑛,     𝑦𝑛+2 = 59𝑦𝑛,     𝑧𝑛+2 = 59𝑧𝑛, 

for all 𝑛 ≥ 1  . Then 

𝑥𝑘+2
2 + 𝑦𝑘+2

2 + 𝑧𝑘+2
2 = 592(𝑥𝑘

2 + 𝑦𝑘
2 + 𝑧𝑘

2); 

hence   𝑥𝑘
2 + 𝑦𝑘

2 + 𝑧𝑘
2 = 59𝑘   implies   𝑥𝑘+2

2 + 𝑦𝑘+2
2 + 𝑧𝑘+2

2 = 59𝑘+2. 

   Remark. We can write the solutions as 

(𝑥2𝑛−1, 𝑦2𝑛−1, 𝑧2𝑛−1) = (1 ∙ 59
𝑛−1, 3 ∙ 59𝑛−1, 7 ∙ 59𝑛−1) 

and 

(𝑥2𝑛 , 𝑦2𝑛, 𝑧2𝑛) = (14 ∙ 59
𝑛, 39 ∙ 59𝑛, 42 ∙ 59𝑛),    𝑛 ≥ 1 . 
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   Example 3. Prove that for all 𝑛 ≥ 3 the equation 

1

𝑥1
+
1

𝑥2
+⋯+

1

𝑥𝑛
= 1                                               (1) 

is solvable in distinct positive integers. 

    Solution. For the base case   𝑛 = 3   we have 

1

2
+
1

3
+
1

6
= 1. 

   Assuming that for some 𝑘 ≥ 3, 

 

1

𝑥1
+
1

𝑥2
+⋯+

1

𝑥𝑘
= 1, 

where   𝑥1, 𝑥2,…, 𝑥𝑘  are distinct positive integers, we obtain 

1

2𝑥1
+
1

2𝑥2
+⋯+

1

2𝑥𝑘
=
1

2
. 

   It follows that 

1

2
+
1

2𝑥1
+
1

2𝑥2
+⋯+

1

2𝑥𝑘
= 1, 

 

where   2, 2𝑥1, 2𝑥2,…, 2𝑥𝑘  are  distinct. 

   Remarks. (1) Note that 

∑
𝑘

(𝑘 + 1)!
= ∑

(𝑘 + 1) − 1

(𝑘 + 1)!
= ∑ (

1

𝑘!
−

1

(𝑘 + 1)!
) = 1 −

1

𝑛!

𝑛−1

𝑘=1

𝑛−1

𝑘=1

𝑛−1

𝑘=1

. 

Hence 

1

2!
1

+
1

3!
2

+ ⋯+
1

𝑛!
𝑛 − 1

+
1

𝑛!
= 1 

i.e., (
2!

1
 ,
3!

2
, … ,

𝑛!

𝑛−1
, 𝑛!) is a solution to equation (1) and all its components are 

distinct. 

   (2) Another solution to equation (1) whose components are distinct is given by 

(2, 22, … , 2𝑛−2, 2𝑛−2 + 1, 2𝑛−2(2𝑛−2 + 1)). 

   Indeed, 

1

2
+
1

22
+⋯+

1

2𝑛−2
+

1

2𝑛−2 + 1
+

1

2𝑛−2(2𝑛−2 + 1)
 

= 1 −
1

2𝑛−2
+

2𝑛−2

2𝑛−2(2𝑛−2 + 1)
+

1

2𝑛−2(2𝑛−2 + 1)
 

= 1 −
1

2𝑛−2
+

1

2𝑛−2
= 1. 

  (3) Another way to construct solutions to equation (1) is to consider the sequence 

http://www.newjournal.org/
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𝑎1 = 2,      𝑎𝑚+1 = 𝑎1 ∙∙∙ 𝑎𝑚 + 1,     𝑚 ≥ 1. 

   Then for all    𝑛 ≥ 3, 

1

𝑎1
+
1

𝑎2
+⋯+

1

𝑎𝑛−1
+

1

𝑎𝑛 − 1
= 1.                                                   (2) 

Indeed, from the recurrence relation it follows that 

𝑎𝑘+1 − 1 = 𝑎𝑘(𝑎𝑘 − 1),       𝑘 ≥ 1, 

or 

1

𝑎𝑘+1 − 1
=

1

𝑎𝑘 − 1
−
1

𝑎𝑘
,        𝑘 ≥ 1. 

   Thus 

1

𝑎𝑘
=

1

𝑎𝑘 − 1
−

1

𝑎𝑘+1 − 1
 

and  the sum 

 

1

𝑎1
+
1

𝑎2
+⋯+

1

𝑎𝑛−1
 

telescopes to 

1

𝑎1 − 1
−

1

𝑎𝑛 − 1
= 1 −

1

𝑎𝑛 − 1
.         

Hence the relation (2) is verified. 

  (4) If (𝑠1, 𝑠2, … , 𝑠𝑛) is a solution to 

1

𝑥1
+
1

𝑥2
+⋯+

1

𝑥𝑛
= 1 

with   𝑠1 < 𝑠2 < ⋯ < 𝑠𝑛 , then (𝑠1, 𝑠2, … , 𝑠𝑛−1, 𝑠𝑛 + 1, 𝑠𝑛(𝑠𝑛 + 1))  is a solution 

to 

1

𝑦1
+
1

𝑦2
+⋯+

1

𝑦𝑛+1
= 1 

and all its components are distinct.  

      (5) For  𝑎 > 1, the identity 

1

𝑎 − 1
=
1

𝑎
+
1

𝑎2
+⋯+

1

𝑎𝑚
+

1

(𝑎 − 1)𝑎𝑚
 

generates various other families of solutions. For example, from 

1

2
+
1

3
+
1

6
= 1. 

and    𝑎 = 7,   we obtain the solution  (2,3,7, 72, … , 7𝑛−3, 6 ∙ 7𝑛−3),   𝑛 ≥ 4 , while 

from   

1

2
+
1

3
+
1

7
+
1

42
= 1 

http://www.newjournal.org/
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we get  (2,3,7,43, 432, … , 43𝑛−4, 42 ∙ 43𝑛−4),        𝑛 ≥ 5. From the construction 

above it follows that equation (1) has infinitely many families of solutions with distinct 

components.  

   (6) It is not known whether there are infinitely many positive integers  𝑛 for 

which equation (1) admits solutions (𝑥1, 𝑥2, … , 𝑥𝑛), where  𝑥1, 𝑥2, … , 𝑥𝑛  are all distinct 

odd positive integers.  

   A simple parity argument shows that in this case    𝑛  must be odd. 

   There are several known examples of such integers   𝑛.  For instance, if  𝑛 = 9, 

we have 

1

3
+
1

5
+
1

7
+
1

9
+
1

11
+
1

15
+
1

33
+
1

45
+

1

385
= 1; 

if  𝑛 = 11, 

1

3
+
1

5
+
1

7
+
1

9
+
1

15
+
1

21
+
1

27
+
1

35
+
1

63
+

1

105
+

1

135
= 1; 

if  𝑛 = 15, 

1

3
+
1

5
+
1

7
+
1

9
+
1

15
+
1

21
+
1

35
+
1

45
+
1

55
 

1

77
+

1

165
+

1

231
+

1

385
+

1

495
+

1

693
= 1; 

and  if  𝑛 = 17, 

1

3
+
1

5
+
1

7
+
1

9
+
1

15
+
1

21
+
1

35
+
1

45
+
1

55
 

1

77
+

1

165
+

1

275
+

1

385
+

1

495
+

1

825
+

1

1925
+

1

2475
= 1; 

Example 4. Prove that equation  

1

𝑥1
2 +

1

𝑥2
2 +⋯+

1

𝑥𝑛2
=
𝑛 + 1

𝑥𝑛+1
2  

 

is solvable in positive integers if and only if    𝑛 ≥ 3. 

(Mathematical Reflections) 

Solution. For,   𝑛 = 1  the equation becomes 

1

𝑥1
2 =

2

𝑥2
2, 

which has no solution, since √2 is irrational. 

    Consider next  𝑛 = 2.  Then the equation becomes 

(𝑥2𝑥3)
2 + (𝑥1𝑥3)

2 = 3(𝑥1𝑥2)
2. 

For 1 ≤ 𝑖 ≤ 3, write  𝑥𝑖 = 3
𝑛𝑖𝑦𝑖, where  𝑦𝑖 is not divisible by 3. Without loss of 

generality assume that     𝑛1 ≥ 𝑛2.   Then 

32(𝑛2+𝑛3)((𝑦2𝑦3)
2 + 32(𝑛1−𝑛2)(𝑦1𝑦3)

2) = 32(𝑛1+𝑛2)+1(𝑦1𝑦2)
2.                  (3) 

http://www.newjournal.org/
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Because 1 is the only possible quadratic residue modulo 3, 

(𝑦2𝑦3)
2 + 32(𝑛1−𝑛2)(𝑦1𝑦3)

2 ≡ 1 𝑜𝑟 2       (𝑚𝑜𝑑 3). 

Hence the exponents of 3 in the two sides of (3) cannot be equal. 

    Finally, consider   𝑛 ≥ 3. Starting from  52 = 42 + 32 , we get 

1

122
=

1

152
+

1

202
 

by dividing by  324252.  Multiplying by  
1

122
 ,  we get 

1

124
=

1

122152
+

1

122202
=

1

122152
+ (

1

152
+

1

202
)
1

202
 

=
1

(12 ∙ 15)2
+

1

(15 ∙ 20)2
+

1

(20 ∙ 20)2
. 

   Hence 

(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (12 ∙ 15,15 ∙ 20, 20
2, 2 ∙ 122) 

is a solution for   𝑛 = 3  . Inductively, assume that  (𝑥1, … , 𝑥𝑛+1) is a solution to 

1

𝑥1
2 +⋯+

1

𝑥𝑛2
=
𝑛 + 1

𝑥𝑛+1
2  

for some   𝑛 ≥ 3  and arrive in this manner at 

1

𝑥1
2 +⋯+

1

𝑥𝑛2
+

1

𝑥𝑛+1
2 =

𝑛 + 2

𝑥𝑛+1
2  

completing the proof. Remark. For   𝑛 = 1  , we get the equation    √2𝑥1 = 𝑥2, 

and since  √2   is irrational, there is no solution in this case. For   𝑛 = 2  , we have 

𝑥2
3𝑥3
2 + 𝑥1

2𝑥3
2 = 3𝑥1

2𝑥2
2 

or equivalently,   𝑎2 + 𝑏2 = 3𝑐2   . We can assume that the numbers   𝑎, 𝑏  and  𝑐 

are all different from zero and that they are relatively prime,   meaning 𝑔𝑐𝑑(𝑎, 𝑏, 𝑐) =

1. The square of an integer is congruent to 0 or 1 modulo 3, and hence both 𝑎 and 𝑏 

are divisible by 3. Now, 𝑐 is also divisible by 3 and we get 𝑎 contradiction.  

    For   𝑛 = 3   , we have at least one solution: 

(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (3,3,6,4), 

that is  

1

32
+
1

32
+
1

62
=
1

42
 

For each integer   𝑛 > 3, we can use the solution for   𝑛 = 3     and get 

1

32
+
1

32
+
1

62
+
1

42
+⋯+

1

42⏟        
𝑛−3

=
4

42
+
𝑛 − 3

42
=
𝑛 + 1

42
. 

Example 5. Prove that for all  𝑛 ≥ 412   there are positive integers  𝑥1, … , 𝑥𝑛    

such that 

1

𝑥1
3 +

1

𝑥2
3 +⋯+

1

𝑥𝑛
3 = 1.                                                        (1) 

http://www.newjournal.org/
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Solution. We have 

1

𝑎3
=

1

(2𝑎)3
+⋯+

1

(2𝑎)3
, 

where the right-hand side consists of eight summands, so if the equation (1) is 

solvable in positive integers, then so is the equation 

1

𝑥1
3 +

1

𝑥2
3 +⋯+

1

𝑥𝑛+7
3 = 1. 

   Using the method of mathematical induction with pace 7, it suffices to prove the 

solvability of the equation (1) for   𝑛 = 412,413,… ,418  . The key idea is to construct 

a solution in each of the above cases from smaller ones modulo 7. 

    Observe that 
27

33
= 1   and   27 ≡ 412     (𝑚𝑜𝑑 7), 

4

23
+

9

33
+
36

63
= 1   and   4 + 9 + 36 = 49 ≡ 413    (𝑚𝑜𝑑 7), 

4

23
+
32

43
= 1   and   4 + 32 = 36 ≡ 414        (𝑚𝑜𝑑 7), 

18

33
+
243

93
= 1   and   18 + 243 = 261 ≡ 415      (𝑚𝑜𝑑 7), 

18

33
+
16

43
+
144

123
= 1   and   18 + 16 + 144 = 178 ≡ 416    (𝑚𝑜𝑑 7), 

4

23
+
16

43
+
36

63
+
144

123
= 1   and   4 + 16 + 36 + 144 = 200 ≡ 417    (𝑚𝑜𝑑 7). 

Finally, 
4

23
+

9

33
+
81

93
+
324

183
= 1   and   4 + 9 + 81 + 324 = 418. 

Above,we mentioned the methods of solving problems of different forms. Now I 

want to mention some problems for independent work in the article. 

 Problems  

   1. Prove that for all integers  𝑛 ≥ 2  there are odd integers    𝑥, 𝑦   such that 

|𝑥2 − 17𝑦2| = 4𝑛.  

(Titu Andreescu)  

   2. Prove that for all positive integers 𝑛, the equation  

𝑥2 + 𝑥𝑦 + 𝑦2 = 7𝑛 

is solvable in integers. 

(Dorin Andrica)  

   3. Prove that for each positive integer   𝑛,   the equation 

(𝑥2 + 𝑦2)(𝑢2 + 𝑣2 + 𝑤2) = 2009𝑛 

is solvable in integers.  

(Titu Andreescu) 

    

 

 

http://www.newjournal.org/
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