КАТАЛИЗАТОРЫ ВТОРИЧНОЙ ПЕРЕРАБОТКИ НЕФТИ

Латофат Махкамова

PhD, Ташкентский государственный технический университет имени Ислама Каримова, Узбекистан, Ташкент

Саида Абдукаримова

PhD, Ташкентский государственный технический университет имени Ислама Каримова, Узбекистан, Ташкент

Низомиддин Ёдгоров

PhD, Ташкентский государственный технический университет имени Ислама Каримова, Узбекистан, Ташкент

Аннотация: Процесс каталитического риформинга является основным процессом получения ароматических углеводородов для приготовления автомобильных бензинов и выделения индивидуальных углеводородов. Сырьем каталитического риформинга при производстве автомобильных бензинов является прямогонная бензиновая фракция с температурой кипения 100–180°С. При снижении температуры кипения менее 100°С происходит увеличение циклогексана в сырьевой смеси, что приводит к высокому выходу бензола в стабильном катализате, содержание которого не должно превышать 1 об. % в товарном бензине согласно требованиям технического регламента Таможенного союза. В связи с этим фракцию с температурами кипения 62–100°С используют для получения бензол-толуол-ксилольной смеси, либо продают в качестве полуфабриката.

Ключевые слова: цеолитные катализаторы, цеоформинг, н-гептан, шиклогексан

Ключевой целью переработки нефти и сопутствующих нефтепродуктов переработки увеличение степени сырья. При минимизировать энергетические и материальные затраты при построении новых технологий и исследований катализаторов с высокой активностью [1]. В настоящее время особый интерес среди исследований наблюдается в области развития цеолитсодержащих каталитических систем в процессах переработки и нефтехимии [2, 3]. Из-за высокой активности, селективности в реакциях конверсии углеводородов, развитой удельной поверхности и уникальным молекулярно-ситовым и кислотным свойствам – они находят широкое применение риформинге, крекинге, каталитическом гидрокрекинге, В превращении спиртов в ценные компоненты химической промышленности [4]. Известна [5] работа по превращению н-гексана на модифицированных медью, цинком, железом цеолитах типа пентасил с соотношением SiO2 : Al2O3 = 33 при отсутствии водорода в реакционной среде. Также известен способ [6] получения высокооктановых бензиновых фракций и ароматических углеводородов C6—C10 на модели двухстадийного процесса риформинга с применение высокоактивных цеолитов со структурой ZSM-5 (тип MFI) и ZSM-11 (тип MEL) при температурах контактирования 440—550°С и давлении 0.3—4.0 МПа в присутствии водородсодержащего газа. Проводились работы [7] по двухстадийному риформингу гидроочищенной нафты 30—220°С с использованием цеолита ZSM-5 при температуре проведения процесса 500—650°С с отношением массового расхода катализатора к массовому расходу углеводородов от 5 до 30.

Лабораторные исследования проводились на двух различных установках: лабораторная установка проточного типа (рис. 1) и лабораторная установка с точной регулировкой (рис. 2). Экспериментальный цикл включал следующие этапы: 1) активация катализатора в токе инертного газа; 2) установление параметров проведения процесса; 3) подача сырья в реактор и проведение каталитического превращения; 4) сбор продуктов превращения и их анализ; 5) регенерация катализатора в токе воздуха. На лабораторной установке проточного типа была проанализирована следующая углеводородная смесь: нгексан = 25 мас. %, н-гептан = 50 мас. %, циклогексан = 25 мас. %. Эксперименты проводились в интервале температур каталитического риформинга 400–500°C. На лабораторной установке с точной регулировкой был изучен процесс превращения н-гексана при избыточном давлении, минимальной объемной скорости подачи сырья и постоянной подаче инертного газа носителя азота. Температурный интервал исследования превращения н-гексана составил 300-500°C, давление 11.6 кгс/см2. Подача инертного газа носителя в систему производилась из стационарного баллона через редуцирующий клапан. Испытываемый катализатор в объеме 5 см3 загружали в вертикальный цилиндр, расположенный в средней части реактора. Температура процесса измерялась термопарой, опущенной в слой катализатора через стальную трубку.

Проведено исследование активности модифицированных модифицированных каталитического риформинга цеолитов В реакции модельных углеводородов. На установке проточного типа определены основные направления превращения гексан-гептановой смеси на цеолите типа ZSM-5 при отсутствии водородсодержащего газа, отсутствии избыточного давления и максимально возможной объемной скорости. Н-гексан, н-гептан и циклогексан составляют большую долю во фракции 62–100°C и являются модельными для данной фракции. При этом на данной лабораторной установке обеспечивается равномерная подача сырья при бесконечно возможном времени контакта сырья с катализатором, так как не используется газ носитель. Повышение температур

более 500°C не целесообразно в связи с повышением крекинга. Результаты превращения модельной углеводородной смеси приведены в табл. 1. На лабораторной установке с точной регулировкой изучено направления превращения н-гексана на цеолите типа ZSM-5, модифицированного солями висмута и хрома в количестве 2 и 1 мас. % соответственно, при повышенных температурах, давлении и сокращении времени контакта сырья с катализатором. Исследования проводились в интервале температур от 300 до 500°C. Избыточное давление эксперимента составило 11.6 кгс/см2. Объемная скорость подачи составила 0.24 ч–1. Расчет производился по следующей формуле:

$$v = L V$$

где ν – объемная скорость подачи, ч–1; L – расход сырья, см3 /ч; V – объем катализатора см3 .

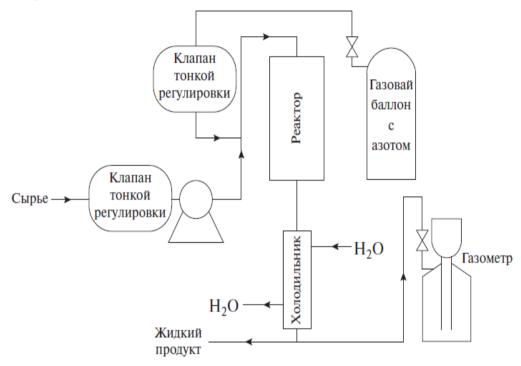


Рис. 1. Схема лабораторной установки с точной регулировкой

Таблица 1. Углеводородный анализ продуктов превращения модельной углеводородной смеси на установке проточного типа

T, °C	400	450	500		
А, мас. %	41	54	72		
Продукты превращения в жидком состоянии					
G_{Ar} , mac. %	43	69	75		
G _{Is} , мас. %	13	20	13		
$G_{ m Alk}$, mac. %	24	1	1		
$G_{ m Ol},$ Mac. %	3	1	1		
Продукты превращения в газовом состоянии					

N ₂ , об. %	9.0	6.8	4.0
Н ₂ , об. %	3.3	8.0	6.5
СН4, об. %	5.8	14.0	22.0
С ₂ Н ₄ , об. %	5.7	15.8	2.0

Из табл. 1 видно, что при исследовании модельной смеси углеводородов на установке проточного типа с ростом температуры наблюдается увеличение степени превращения до 71.9%. Расчет степени превращения (A, мас. %) производился следующим образом:

Таблица 2. Углеводородный анализ продуктов превращения н-гексана на установке точной регулировки

T, °C	350	400	450			
А, мас. %	41	54	72			
Продукты пре	Продукты превращения в жидком состоянии					
G _{Ar} , mac. %	0.1	0.4	15.3			
G _{Is} , мас. %	2.4	2.5	10.7			
$G_{ m Alk}$, mac. %	90.8	84.3	55.8			
$G_{ m Ol}$, mac. %	1.6	4	5.4			
Продукты превращения в газовом состоянии						
N ₂ , oб. %	4.7	3.3	4.9			
Н ₂ , об. %	0	0	7.2			
СН ₄ , об. %	0	0	5.7			
С ₂ Н ₄ , об. %	0	8.7	8.1			

При температуре 450°C наблюдается высокая доля ароматических соединений в продуктах превращения – 70.5 мас. %, изомерных углеводородов – 19.7 мас. % и водорода – 8 мас. %, потребность которого постоянно возрастает в связи с развитием гидрогенизационных процессов. При этом из табл. 3 видно, что основную долю ароматических соединений составляют толуол и ксилол, ограничение которых в смесевых автомобильных бензинах не более 35 об. %

ZSM-5, Изучение превращения н-гексана на цеолитах типа модифицированных солями висмута и хрома в количестве 2 и 1 мас. % соответственно, И изучение превращения гексан-гептановой немодифицированных цеолитах ZSM-5 показало, что цеолитные системы активно участвуют в реакциях крекинга, изомеризации и ароматизации. Все исследования проводились при отсутствии водородсодержащего газа, что исключает участие циркуляционного водорода в каталитических реакциях. При этом при риформинге гексан-гептановой смеси на установке проточного типа наблюдается высокий выход ароматических углеводородов: 70-75 мас. %

жидкого продукта при температурах 450–500°С. Нафтеновые углеводороды полностью превращаются в ароматические. Доля парафиновых углеводородов в жидком продукте не превышает 2 мас. %. Однако большинство парафиновых углеводородов вступает в реакцию крекинга, в связи с чем выход жидких продуктов при данных температурах составляет всего 30 мас. %, что крайне мало.

Главным преимуществом может являться исключение использования дорого водородсодержащего газа и применения драгоценных металлов в катализаторах процесса риформинга. Влияние металлических центров висмута и хрома в реакционной зоне заметно в повышении содержания углеводородов олефинового ряда до 6.6 мас. % при 400°C

СПИСОК ЛИТЕРАТУРЫ

- 1. Имашев У.Б., Тюрин А.А., Удалова Е.А. Особенности развития процесса каталитического риформинга в России // Башк. хим. журн. 2010. Т. 44. № 4. С. 184.
- 2. Zelenskaya E.A., Zelenskaya T.V. Investigating sweetening low octane HC fracturing process with organically modified zeolite catalysts // Ekspozitsiya Neft Gaz. 2012. № 6. Р. 24. [Зеленская Е.А, Зеленская Т.В. Исследование процесса облагораживания низкооктановых углеводородных фракций на органически модифицированных цеолитных катализаторах // Экспозиция Нефть Газ. 2012. № 6. С. 24.]
- 3. Кузьмина Р.И., Заикин М.А., Манин С.Д., Мендагалиева Д.Р. Повышение активности промышленного катализатора изомеризации парафиновых углеводородов // Изв. Сарат. унив. Нов. сер. Сер. Хим. Биол. Экол. 2017. Т. 17. № 1. С. 24.
- 4. Erofeev V.I., Khomyakov I.S., Egorova L.A. Production of high-octane gasoline from straight-run gasoline on ZSM-5 modified zeolites // Theor. Found. Chem. Eng. 2014. V. 48. № 1. Р. 71. [Ерофеев В.И., Хомяков И.С., Егорова Л.А. Получение высокооктановых бензинов из прямогонных бензинов на модифицированных цеолитах ZSM-5 // Теор. осн. хим. технол. 2014. Т. 48. № 1. С. 77.]
- 5. Mamedov S.E., Akhmedova N.F., Mirzaliyeva S.E., Mirzai D.I., Akhmedov E.I., Azmamedova KH.M., Dadasheva S.S. Conversion of n-hexane and straight-run gasoline over modified pentasil zeolites // Oil Gas Chem. 2018. № 1. Р. 33. [Мамедов С.Э., Ахмедова Н.Ф., Мирзалиева С.Э., Мирзаи Д.И., Ахмедов Э.И., Азмамедова Х.М., Дадашева С.С. Превращение н-гексана и прямогонной бензиновой фракции на модифицированных пентасилах // НефтеГазоХимия. 2018. № 1. С. 33.]
- 6. Степанов В.Г. Способ получения высокооктановых бензиновых фракций и ароматических углеводородов. Пат. 2704006 РФ. 2019.
- 7. Фанже Б., Кудиль А., Паго А., Корруайе Р., Фернандес Ж. Способ получения легких олефинов и ВТХ с применением установки каталитического крекинга, обрабатывающей тяжелое сырье типа VGO глубокой гидроочистки, в комбинации с установкой каталитического риформинга и ароматическим комплексом, обрабатывающим сырье типа нафты. Пат. 2672913 РФ. 2018