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Abstract 

Unmanned aerial vehicles (UAVs) are becoming more and more common in 

applications because of their ability to integrate a variety of sensors with cheap 

operating costs, easy deployment, and improved mobility. However, using unmanned 

aerial vehicles (UAVs) in complex environments at a distance limits their capabilities 

and reduces the system's overall efficacy. Consequently, a lot of researchers are 

concentrating on autonomous UAV navigation, which enables UAVs to move and 

perform certain tasks in accordance with their surroundings. Recent technological 

advancements have led to an increase in the applications of artificial intelligence (AI). 

A comprehensive analysis and classification of several AI methods for autonomous 

UAV navigation has been carried out. Two distinct AI approaches are model-based 

learning and mathematical optimization. This study reviews the fundamentals, 

principles and key features of several optimization and learning-based strategies. 

Moreover, an assemblage of unmanned aerial vehicles (UAVs) fitted with cameras 

records or observes particular areas. The UAVs can create a distributed network to 

process and share the sensory data they have acquired before sending it to a data 

processing center. Between them, extensive data flow may cause excessive latency and 

energy consumption. Artificial intelligence (AI) techniques are used in this research to 

process the video data that is being broadcast among the UAVs. Therefore, all that is 

required of each scattered UAV is communication of the relevant information with the 

others. Each UAV processes data using AI, and only information that is significant to 

the others is transmitted. Features are automatically retrieved from images using 

convolution neural network (CNN) technology, allowing UAVs to broadcast only the 

moving objects and not the full picture. The network thus consumes far less energy and 

transmits significantly less redundant data to any given UAV or to the network as a 

whole. The UAVs are also capable of energy conservation so they can continue to 

move in the sensing field. 

Keywords: Unmanned aerial vehicle (UAV), artificial intelligence (AI), 

Convolution Neural Network (CNN), deep neural network, optimization, navigation, 

information sharing. 
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Introduction 
Unmanned aerial vehicles (UAVs) are aircraft capable of taking to the air without 

the need for a human pilot [1]. UAVs are being utilized in both military and civilian 

applications more and more due to their great mobility, simplicity in deployment, and 

low maintenance. Furthermore, UAVs are able to carry a large variety of possible 

sensors for any important missions. Numerous uses for unmanned aerial vehicles 

(UAVs) exist, including medical support, search and rescue (SaR), emergency cellular 

deployment, crowd monitoring, target tracking, goods delivery, wildfire monitoring, 

and intelligent transportation. Unfortunately, due to their reliance on human control 

and the limitations of radio frequency (RF) communication, unmanned aerial vehicles 

(UAVs) are unable to operate at their best in a complex and dynamic environment [1]. 

For the best results, autonomous UAV navigation in large-scale dynamic environments 

is essential. Traditional methods to accomplish autonomous navigation frequently 

make use of sensing and avoidance techniques, mapping and localization techniques, 

and avoidance and sensing techniques. 

CHARACTERISTICS OF UAVS AND MODELS OF NAVIGATION 

Since the creation of airplanes, engineers and scientists have faced a great deal of 

difficulty in realizing unmanned aerial systems. Today, a wide variety of UAVs are 

available for both military and non-military use. As indicated in Table 2, UAVs are 

frequently categorized according to features including form, range, cost, maximum 

take-off weight, and pricing. A UAV's payload is one of its most important 

characteristics. The payload, or maximum weight a UAV can lift, is a measure of its 

lifting capability. A few grams to hundreds of kilograms can be carried by a UAV 

payload [2]. At the expense of the UAV's size, battery capacity, and flight duration, a 

larger payload allows for the carrying of more accessories and equipment. Cameras, 

sensors, cell phones, and base stations for cellular support are examples of conventional 

payloads. 

Table 2. Characteristics of different types of UAVs 

Types Characteristics Advantages 

Fixed-

wing [33] 

Weight: 0.5-2500 kg 

Range: up to 1850 km 

Speed: up to 500 km/h 

Flight: up to 2000 min 

Payload: up to 1500 kg 

Power supply: LiPo/fuel 

1.Long Range 

2.High payload 

3.High Speed 

4.Long Flight time 

Helicopte

r [58] 

Weight: 25-200 kg 

Range: up to 400 km 

Speed: up to 120 km/h 

Flight: up to 250 min 

Payload: up to 65 kg 

Power supply: LiPo/fuel 

1.High maneuverability 

2.Vertical payload lift 

3.Easy deployment 

Loon [59] Weight: up to 75 kg 

Range: up to 100 km 

Speed: up to 30 km/h 

Flight: up to 100 days 

1.Very long flight time 

2. Vertical payload lift 

3.Low maintenance 

4. Ample power supply 
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Payload: up to 10 kg 

Power supply: Solar 

battery 

Multi-

coper [33] 

Weight: up to 25 kg 

Range: up to 10 km 

Speed: up to 160 km/h 

Flight: up to 60 min 

Payload: up to 5 kg 

Power supply: LiPo 

battery 

1.Inexpensive 

2.Low weight 

3.Very High 

maneuverability 

4.Easy deployment 

 

Based on their flight methods, UAVs can be broadly divided into four categories, 

as seen in Fig. 1.  

 
FIGURE 1. Different types of UAVs: (a) fixed-wing, (b) helicopters, (c) 

multi-copters, and (d) loons. 
These categories include fixed-wing, helicopters, loons, and multi-copters. 

Because they can glide through the air, fixed-wing UAVs use less energy and can carry 

larger payloads. Furthermore, gliding can help fixed-wing UAVs move more quickly. 

They can't hover over a set spot, though, and they need more room to take off and land. 

Multi-copters and fixed-wing aircraft are combined to become helicopters. With their 

tail wings, they can fly through the air and land and take off vertically. Loons, on the 

other hand, lack motors for directed movement and are solely dependent on air pressure 

[3]. Finally, multi-copters are able to hover over a specific location while taking off 

and landing vertically. However, because they always fly against gravity, multi-copters 

have a limited flying time and consume a significant amount of energy. 

Since flying is the primary function of UAVs, UAV navigation can be divided 

into four groups according to the applications they are used for: indoor navigation, 

outdoor navigation, SaR navigation, and wireless networking navigation (Fig. 2).  
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FIGURE 2. Application-based categorization of UAV Navigation.   

 

In this case, indoor navigation comprises applications like inside mapping, factory 

automation, and indoor surveillance, and outdoor navigation includes applications like 

target tracking, good delivery, surveillance, and crowd monitoring. Furthermore, the 

navigation of UAVs can be divided into three categories: vision-based, signal-based, 

and inertia-based. Gyroscopes, accelerometers, and altimeters are the primary 

navigational aids used by UAVs for inertia-based navigation, guiding the onboard 

flight controller [4]. For signal-based navigation, UAVs utilize GPS modules and a 

remote radio head (RRH) when they have cellular connectivity; for vision-based 

navigation, they employ cameras. 

Pitch and yaw controls are initially guided by the altitude and horizontal 

controllers, which get data from these sensors based on the intended path planning. 

Based on the feedback from these sensors, the elevators and ailerons are then guided 

by the pitch and yaw controls to steer the UAV, as seen in Fig. 3 [5]. When using 

different AI algorithms, UAVs can navigate autonomously and yet obtain the necessary 

path planning, as demonstrated in Fig. 3. Thus, the focus of this work is on various AI 

techniques used for UAV navigation by various researchers. 

 
FIGURE 3. UAV navigation system model [5]. 
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OPTIMIZATION-BASED APPROACHES 
The conventional mathematically based AI problem-solving methods are covered 

by optimization-based techniques. These algorithms are able to solve any given non-

deterministic polynomial-time hard (NP-hard) issue almost optimally. These 

algorithms are, nevertheless, very intricate in terms of both space and time. The most 

popular optimization-based AI techniques for autonomous UAV navigation are 

covered in brief in this section. The algorithm, PSO, ACO, GA, and other random 

algorithms. Additionally, Table 3 presents a comparative analysis of these 

optimization-based AI systems, emphasizing their key characteristics, temporal 

complexities with multiple m procedures, and hyper-parameter counts. 

Table 3 Comparative study of different optimization based AI approaches 
Algor

ithm 

Type Feature Complexity Hyper-

paramet

er Cout 

PSO 

 

MPSO Covert the infeasible paths generated 

by PSO into feasible paths using an 

error factor 

O(mn2) 6 

DPSO Takes discrete steps to propagate and 

multiple augmentations are done for 

better convergence 

O(mn+mn2) 5 

GBPSO Compares the current global path with 

the other global path candidates to 

select the optimal one 

O(2mn3+ 

mn2) 

7 

ACO Multi-Aco Solves the TSP problem and both 

intra-colony and inter- colony 

pheromone values are considered 

O(mn2) 8 

Double-

ACO 

Utilizes GA to generate the initial 

population 

O(mn2) 9 

PFACO Utilizes MMAS and APF for better 

global searching, fast convergence 

O(mn2) 4 

GA GA Chromosomes are made up of the 

acceleration, climbing angle rate, and 

heading angle rate of the UAVS 

O(mn2) N/A 

Improved-

GA 

Consists of an encoding vector based 

on the UAV yaw angle sequence 

O(mn2) 5 

HR-

MANGA 

Uses a hierarchical recursive process to 

determine a refined path 

O(mn2) 7 

OCGA Utilizes TLBO and OC searching for 

fast convergence 

O(mn2) 4 

 

PARTICLE SWARM OPTIMIZATION (PSO) 
PSO was first presented in 1995 by Eberhart and Kennedy. PSO is a population-

based search method designed to mimic many animal species, including bees and birds. 

Every animal in PSO can be modeled as a vector particle in a three-dimensional space. 

A particle's movement is determined by PSO based on its velocity and present position. 

As illustrated in Fig. 5, the particle's velocity keeps updating in accordance with the 

swarm's (Gbest) and its own optimal position vector (Pbest). When PSO meets its 

objective or the lowest possible error, it is at its optimal position. 
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Figure 5. Particle swarm optimization (PSO) 

 

PSO manages the movement of UAVs in a three-dimensional space by treating 

them like particles during UAV navigation. Autor Jalal altered the traditional PSO in 

[5] to enable offline UAV navigation around obstructions. Similar to a traditional PSO, 

the modified PSO (MPSO) models an extra error element to guarantee convergence. 

The error factor's primary job is to change the unfeasible paths produced by PSO into 

workable ones. For verified optimality, MPSO moves and re-initializes particles that 

are inside an obstacle boundary. The authors simulated scenarios with both single and 

multiple obstacles to guarantee the effectiveness of the MPSO. Similar to this, Phung 

et al. changed the traditional continuous PSO into discrete PSO (DPSO) in order to 

address the issue of UAV path planning in [6]. The authors took discrete 3D space and 

obstacles into consideration when modeling the UAV path planning problem as a 

traveling salesman problem (TSP). In addition, the DPSO's convergence was 

accelerated by using random mutation, edge exchange, deterministic initialization, and 

parallel GPU implementation techniques. A competition strategy-based PSO (GBPSO) 

was presented by Huang et al. in 2018 [7] to choose the global optimal path for UAVs. 

To determine the best path for particles, the suggested competition technique contrasts 

the existing global path with other global path possibilities. 

ANT COLONY OPTIMIZATION (ACO) 

As the name implies, ACO was inspired by the way ants forage for food. Ants 

communicate and work together while searching for food by using a highly volatile 

chemical called pheromone. When ants first find a food supply, they begin to look for 

routes there and release pheromones along the way. Other ants follow the pheromone 

traces left by the first ant and find alternative routes to the food source. As a result, as 

Figure 6 illustrates, the ant colony that finds the shortest path will have a higher 

concentration of pheromones. Furthermore, over time, the pheromone concentration 

on the deserted routes decreases. 
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Figure 6. Ant colony optimization (ACO) 

 
Cekmez et al. developed a multi-colony ACO-based method in [8] for 

autonomous UAV navigation while avoiding obstacles in a 3D space. The authors 

claim that the premature convergence issue brought on by single-colony ACO is 

resolved by multi-colony ACO. The UAV navigation problem was first stated by the 

authors as a TSP problem, after which several UAV groups looked for the best routes 

to the target. The UAVs are in charge of both intra- and inter-colony pheromone value 

exchange in multi-colony ACO. Similar to this, Guan et al. presented a double-colony 

ACO in [9] where pheromones are produced by taking use of the GA.   

To solve the premature convergence issue, it is suggested combining an artificial 

potential field (APF) with an ACO called potential field ACO (PFACO). The APF 

algorithm is designed to avoid obstacles and maintain the UAV's optimal speed and 

safety in environments where there are repulsive and gravitational forces. Moreover, 

to enhance global searching, the APF modifies a UAV's transition probability from one 

ACO node to another. Additionally, the authors updated the global pheromone value 

for faster convergence while identifying the best and worst paths using the min-max 

ant system (MMAS) and weakening the worst path. 

GENETIC ALGORITHM (GA) 

The initial population of the GA, a stochastic optimization technique, is a 

population of randomly generated chromosomes. Every chromosomal gene is 

represented by a string of digits. In this work, every chromosome or individual 

represents a UAV trajectory constrained by the UAV dynamics. Every generation, the 

population will change regularly due to genetic processes such crossover, mutation, 

selection, insertion, and deletion; the modified chromosomes will be chosen based on 

a fitness function. Through the identification of the chromosome with the near-

minimum fitness value, this approach seeks to minimize the fitness function as much 

as feasible. The chromosomes thus arrive to a close to ideal solution. In [10], the GA 

approach is discussed in detail.   

We can use GA to address the NP-hard UAV navigation problem. Initially, as 

illustrated in Fig. 7, the author encodes the three-dimensional position of the UAV into 

chromosomes comprising the acceleration, climbing angle rate, and heading angle rate 

at discrete time steps of a UAV. This chromosome is decoded at the current time-step 

so that the UAV can obtain 3D coordinates at the following time-step. Next, a fitness 

function that takes into account the costs of path length, barriers, height, and distance 
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between two points is used to evaluate the 3D coordinate. Then come the genetic 

operations: insertion and deletion take care of managing path information, crossover 

deals with sharing path information, mutation deals with information loss, and 

selection deals with choosing paths. 

 

 
Figure 7. Genetic algorithm (GA) for UAV navigation. 

 

By creating a temporary path based on the encoding vector and including the 

status variables in addition to the guide point position information in each guidance, 

Tao et al. enhanced the GA [11]. It therefore records whether the guiding point is viable 

if it satisfies the constraint requirement and whether the path with the lowest 

performance cost between the connecting point and the subsequent guide points is 

feasible. If every one of the guiding points is accurate, then the temporary path is 

feasible. The shift in the UAV yaw angle sequence serves as the basis for the encoding 

technique.  

Agents can sense their surroundings, interact with nearby neighbors, and reduce 

their loss by using the appropriate operators, who quickly find a workable solution, as 

HR-MAGA evolves. Furthermore, HR-MAGA can use the hierarchical recursive 

process to optimize the local path in order to generate a more refined path. 

To generate an initial population of good quality, an opposing and chaotic search 

strategy is employed. A certain range of solutions can be covered via chaos searching. 

Conversely, opposite searching can yield more appropriate reverse sequences based on 

chaotic searching. Thus, the authors suggested a novel crossover strategy based on the 

teaching-learning-based optimization learning mechanism (TLBO) in order to speed 

up convergence. 

CONCLUSION 

In complicated and dynamic environments, autonomous UAV navigation has 

improved performance and brought about significant flexibility. To introduce the 
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reader to UAV architecture, this survey focuses on the key traits and varieties of UAVs. 

In addition, an overview of the application-based classification and UAV navigation 

system was provided to facilitate researchers' understanding of the ideas presented in 

this survey. The foundations, guiding principles, and essential elements of several AI 

algorithms used by various researchers for autonomous UAV navigation were 

explained in terms of optimization-based and learning-based techniques. Various 

optimization-based techniques, including the PSO, ACO, and GA algorithms, were 

examined and emphasized. To accomplish their goals as best they could, numerous 

researchers have adjusted these techniques.  
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