ПРОИЗВОДСТВО ПРОДУКЦИИ ИЗ СМОЛ ПОДЗЕМНОГО УГЛЯ ГАЗИФИКАЦИИ

Кодирова Феруза

Старший преподаватель Института инженерии и строительства Наманган

Нўмонова Сохиба

Учитель Наманганского института инженерного и строительства **Мўйдинова Нилуфар**

Учитель Наманганского института инженерного и строительства **Мухтаралиева Мухтасар**

Учитель Наманганского института инженерного и строительства

Аннотация. В статье предоставлена информация об угле в формировании природных углеводородов. Значение ангрена в основном работало над энергией угля и использования в металлургической промышленности.

Ключевые слова: углеводороды, уголь, производство, резерв, энергия, технология

Annotation. The article provides information about the angle in the formation of natural hydrocarbons. The value of Angrene mainly worked on coal energy and use in the metallurgical industry.

Key words: hydrocarbons, coal, production, reserve, energy, technology.

В связи с истощением природных углеводородных — сырьевых запасов в Республике Узбекистан ведутся работы по получению углеводородных продуктов переработки ангренского бурого угля. В период развития углехимии процессе получили достаточное развитие, но в настоящее время пироконденсат и смолы подземной газификации углей используются неквалифицированно, последнее газификация является поставщиком лишь энергетического газа.

Объясняется это, во-первых, тем, что углехимия как отрасль промышленности самостоятельного значения не имеет и находится в постоянной зависимости от конъюнктуры в черной металлургии, и, во-вторых, низким качеством ее продуктов, получаемых существующими методами. Последнее приводит к тому, что они не находят применения в промышленности органического синтеза, которая предпочитает пользоваться массовыми высококондиционными продуктами нефтепереработки. Потому что, конкурентная способность нефтяных продуктов обусловлена, в основном, большим размахом производства и низкой стоимостью сырья. Развитие углехимии перестанет зависеть от конъюнктуры в черной металлургии, если будут разработаны новые процессы, основанные на гибких и селективных принципах разделения и последующей переработки выделенных фракций прогрессивными физико-химическими методами.

Значительный качественный скачок в развитии углехимии возможен при создании единого производства на базе химических продуктов коксования, полукоксования и подземной газификации угля. Кооперирование по сырьевому признаку требует тщательного изучения всех основных факторов, влияющих на эффективность процесса. Как показали наши исследования, гидрогенизацией под невысоким давлением можно полностью перерабатывать смолу - основного продукта, образующийся при пиролизе угля. Многие закономерности являются общими для смол высокотемпературного и среднетемпературного пиролиза. Успех процесса гидрооблагораживания решают применение эффективных катализаторов, создание, оптимальных молярных концентраций водорода при снижении давления до 5ат, присутствие лёгкокипящих разбавителей [1]. Опыты проводили на проточной установке - с объемом реактора 0,5 л. В качестве сырья применяли смолу пиролиза ангренского бурого угля.

образец каталитической Экспериментальный системы основе алюмоникеля и молибдена способствует образованию ценных химических продуктов при гидрокрекинге смолы подземной газификации углей (ПГУ). С этой целью мы исследовали процесс гидрокрекинга смолы ПГУ ангренских углей на микролабораторной установке при 550—650°C и давлении водорода 5,30 и 50 ат. Молярная концентрация водорода была во всех опытах постоянной и обеспечивалась циркуляцией водорода 1000 $_{\rm J}/_{\rm K}$ Г сырья. Характеристика смолы, использованной в качестве сырья, приведена в табл. 1. Гидрокрекинг осуществляли со смесью сырья и легкокипящего разбавителя в соотношении 1:1. Степень превращения сырья и выход фракций определяли при осуществлении процесса.

Таблица 1-Состав свойства узких фракций образца смолы ПГУ

Пределы	Выход	Плотн	Относит	Показатель	Йод	Кол.	Содержание на	
кипения, °С	%,	ость	ельная	лучепре-	ное	сулфир	сырье	
	масс.	при	молеку-	ломления	число	У	Непре-	Аромат
		20°C	лярная	при 20°С		ющихся	дел.углев	И
			масса			% масс.	O	ческие
							дороды	углево
								дороды
								дороды
До 100	2,75	0,9282	135	1,5203	48,4	84,6	0,71	1,61
					3			
100-170	0,71	0,9429	141	1,5210	46,8	90,0	0,18	0,45
					8			3,12
170-200	4,75	0,9610	138	1,5321	47,9	93,3	1,23	3,20
					8			, , , ,

200-230	17,85	0,9706	141	1,5471	51,5 7	93,3	5,12	11,50
250-270	5,85	0,9833	159	1,5702	48,7	96,7	1,78	3,87
270-300	12,74	1,0028	177	1,5823	48,9 5	89,2	4,35	7,05
300-320	7,95	1,0399	214	-	-	-	-	-
320-360	19,70	1,0785	216	-	-	-	-	-
Ост. выше 360	20,60	-	478	-	-	-	-	-
Итого	100,0						15,43*	30,00*

Исследуемая каталитическая система прочно удерживает водород в порах. Это в основном и препятствует течению побочных процессов при средних и низких давлениях. Увеличение давления частично подавляет коксообразование.

Данные трех серий, опытов (при 550, 600 и 650°С) показывают, что при 550°С повышение давления не влияет на образование кокса. Это свидетельствует о том, что скорости насыщения осколков молекул водородом достаточно велики по сравнению с реакциями уплотнения. При 600°С выход кокса уменьшается с 1,2 до0,3%, а при 650° С - с 1,3 до 0,5%. Снижение коксообразования можно объяснить еще и тем, что с увеличением давления расходуется больше водорода.

Экспериментальные исследования показывают увеличение количества образовавшихся ароматических углеводородов в зависимости от повышения температуры в результате превращения остатка сырья, кипящего выше 320°С. Снижение давления может быть компенсировано повышением температуры или уменьшением объемной скорости. С точки зрения технологии, более целесообразно повышать температуру.

Сравнивая результаты, видим, что при снижении давления с 50 до 5 ат и увеличении температуры с 550 до 600°С, в первом случае, и с 600 до 650°С, во втором, глубина превращения сырья не уменьшилась, а возросла. При снижении давления до 5 ат, степень превращения непредельных углеводородов при температурах 550—600°С не превышает 7,8%. Это явление можно объяснить тем, что при снижении давления время пребывания молекулы непредельного углеводорода в хемосорбированном состоянии на поверхности катализатора, уменьшается настолько, что насыщения непредельных соединений водородом не происходит. С увеличением температуры от 600 до 650°С степень превращения непредельных углеводородов увеличивается, но максимума, по-видимому, не достигает.

Литература

1. Кодиров, Д. Т., & Кодирова, Ф. М. (2021). Алгоритмы совместного оценивания вектора состояния и параметров динамических систем. Universum: технические науки, (7-1 (88)), 66-68.

- 2. Kodirov, D. T., Kodirova, F. M., Haydarov, B., & Negmatov, U. (2020). Algorithms For Stable Estimation Of The Extended State Vector Of Controlled Objects. Solid State Technology, 63(6), 14903-14909.
- 3. Kodirova, F. U. (2019). Modern Approaches to Preparing Disabled Children for Social Life in Uzbekistan.
- 4. Кодиров, Д. Т., Кодирова, Ф. М., & Юлдашбаев, А. А. (2022). АНАЛИЗ АЛГОРИТМОВ УПРАВЛЕНИЯ ПРОЦЕССОМ НИЗКОТЕМПЕРАТУРНОЙ СЕПАРАЦИИ. Главный редактор: Ахметов Сайранбек Махсутович, д-р техн. наук; Заместитель главного редактора: Ахмеднабиев Расул Магомедович, канд. техн. наук; Члены редакционной коллегии, 39.
- 5. Кодиров, Д. Т., & Кодирова, Ф. М. (2020). ПЕРСПЕКТИВНЫЕ ЭНЕРГОНОСИТЕЛИ БУДУЩЕГО. Вестник Науки и Творчества, (5 (53)), 50-53.
- 6. Эшмухамедов, М. А., & Кадырова, Ф. М. (2018). Гидрирование непредельных углеводородов углехимического происхождения на никелевом катализаторе. Рецензент: ЕА Лисица главный врач филиала Федерального бюджетного учреждения здраво-охранения «Центр гигиены и эпидемиологии в Хабаровском крае, в городе Комсомольске-на-Амуре, Комсомольском районе» Редакционная коллегия, 123.
- 7. Qodirova, F. CURRENT ISSUES AND STRATEGIES OF PREPARING THE CHILDREN WITH LIMITED ABILITIES FOR SOCIAL LIFE IN UZBEKISTAN.
- 8. Feruza, Q. (2022). TECHNOLOGY FOR PROCESSING CARBON DIOXIDE EXHAUSTED FROM THE MIXTURE OF EXHAUST GAS FLOWS. BARQARORLIK VA YETAKCHI TADQIQOTLAR ONLAYN ILMIY JURNALI, 2(9), 252-255.
- 9. Qodirova, F. (2022). PRODUCTION OF PRODUCTS FROM RESINS OF UNDERGROUND COAL GASIFICATION. Science and innovation, 1(A6), 129-132.
- 10. No'Manova S. E. Ta'lim jarayonida talabalarning amaliy bilimlarini rivojlantirish metodikasi //Oriental renaissance: Innovative, educational, natural and social sciences. − 2021. − T. 1. − №. 9. − C. 585-589.
- 11. Алимджанова, Д., Акбаров, А., & Муйдинова, Н. К. (2017). Способ повышения эффективности горения угольного топлива в кольцевой печи. In Issues of modern education in the condition of globalization. Collection international scientific conference.
- 12. Mukhtasar, M. (2021). Improving the methodology of teaching virtual lessons on the basis of modern digital technologies. Journal of Advanced Scientific Research (ISSN: 0976-9595), 1(1).
- 13. No'Manova S. E. Qurilish materiallari, buyumlari va konstruksiyalarini ishlab chiqarish //Oriental renaissance: Innovative, educational, natural and social sciences. − 2021. − T. 1. − №. 9. − C. 605-608.
- 14. Абдуманнопов, Н. А. (2018). Модернизация кольцевой печи для обжига строительного кирпича. Научное знание современности, (12), 25-29.

- 15. Sharopov, B., & Muxtoraliyeva, M. (2022). PEDAGOGIKA FANINING METODOLOGIYASI. PEDAGOGS jurnali, 2(2), 259-262.
- 16. Ergashboevna N. S. METHODOLOGY OF DEVELOPING STUDENTS'PRACTICAL KNOWLEDGE ON THE BASIS OF CLUSTER APPROACH IN THE PROCESS OF TEACHING BUILDING MATERIALS AND PRODUCTS //Scientific Impulse. − 2022. − T. 1. − № 2. − C. 629-632.
- 17. Алимджанова, Д. И., & Муйдинова, Н. К. К. (2020). Повышение эффективности горения угольного топлива в кольцевой печи для обжига строительного кирпича. Universum: технические науки, (4-1 (73)), 67-71.
- 18. Sharopov, B., & Muxtoraliyeva, M. Pedagogika fanining metodologiyasi. Pedagogs international research journal. 259-262 (2). Volume-2, Issue-1.
- 19. Ergashboevna N. S. USE OF MULTIMEDIA TECHNOLOGIES IN THE PROCESS OF TEACHING BUILDING MATERIALS AND PRODUCTS //CENTRAL ASIAN JOURNAL OF THEORETICAL & APPLIED SCIENCES. 2022. T. 3. № 6. C. 126-129.
- 20. Алимджанова, Д. И., Абдусатторов, Ш. М., Муйдинова, Н. К. К., & Абдуганиев, Ш. Х. У. (2021). Водоугольное топливо на основе бурого угля Ангренского месторождения. Universum: технические науки, (3-2 (84)), 68-72.
- 21. Мухторалиева, М. (2022). Қурилиш соҳасида мутахассислик фанларини ўқитиш тамойиллари. Analytical Journal of Education and Development, 2(6), 114-118.
- 22. Numanova S. E. Energy-efficient modern constructions of external walls //Экономика и социум. 2021. №. 1-1. С. 193-195.
- 23. Mo'Ydinova, N. (2022). G'ISHT ISHLAB CHIQARISH TEXNOLOGIK JARAYONLARI VA TARKIBI HAQIDA. Science and innovation, 1(A8), 493-498.
- 24. Mukhtoralieva, M., Rakhmonov, S., & Ganiev, A. (2022). THE ESSENCE OF TEACHING BASED ON THE COMPETENCE APPROACH TO THE HIGHER EDUCATION PROCESS. Science and innovation, 1(B7), 784-788.
- 25. Хамидов А. И., Нуманова С. Э., Жураев Д. П. У. Прочность бетона на основе безобжиговых щёлочных вяжущих, твердеющего в условиях сухого и жаркого климата //Символ науки. 2016. №. 1-2. С. 107-109.
- 26. Muxtoraliyeva, M., Xayitboyev, S., & Nazirova, M. (2022). QURILISH MATERIALLARI VA BUYUMLARI FANINI O 'QITISHDA INTERFAOL TA 'LIM METODLARI. Science and innovation, 1(C6), 146-152.
- 27. Mavlonov R. A., Numanova S. E., Umarov I. I. Seismic insulation of the foundation //EPRA International Journal of Multidisciplinary Research (IJMR)-Peer Reviewed Journal. 2020. T. 6. №. 10.
- 28. Sharopov, B., Hakimov, S., Umarov, I., Muxtoraliyeva, M., Dadaxanov, F., & Abdunazarov, A. (2022). QUYOSH ENERGIYASIDAN FOYDALANIB TURAR JOY BINOLARI QURISHNING ISTIQBOLI TOMONLARI. Journal of new century innovations, 18(1), 135-141.
- 29. Мавлонов Р. А., Нуманова С. Э. ЭФФЕКТИВНОСТЬ СЕЙСМИЧЕСКОЙ ИЗОЛЯЦИИ В ЖЕЛЕЗОБЕТОННЫХ МНОГОЭТАЖНЫХ КАРКАСНЫХ

- ЗДАНИЯХ //НАУЧНЫЙ ЭЛЕКТРОННЫЙ ЖУРНАЛ «МАТРИЦА НАУЧНОГО ПОЗНАНИЯ». С. 37.
- 30. Hakimov, S., Sharopov, B., Umarov, I., Muxtoraliyeva, M., Dadaxanov, F., & Abdunazarov, A. (2022). URILISH MATERIALLARI SANOATIDA INNOVATSION MATERIALLAR ISHLAB CHIQARISHNING ISTIQBOLLI TOMONLARI. Journal of new century innovations, 18(1), 149-156.
- 31. Mavlonov R. A., Numanova S. E. Effectiveness of seismic base isolation in reinforced concrete multi-storey buildings //Journal of Tashkent Institute of Railway Engineers. 2020. T. 16. №. 4. C. 100-105.
- 32. Kazadayev, A., Sharopov, B., Hakimov, S., Umarov, I., Muxtoraliyeva, M., Dadaxanov, F., & Abdunazarov, A. (2022). MAMLAKATIMIZDA NEMIS TA'LIM TIZIMINI JORIY QILISHNING SAMARADORLIGI TAHLILI. Journal of new century innovations, 18(1), 124-129.
- 33. Ризаев Б. Ш., Мавлонов Р. А., Нуманова С. Э. Деформации усадки и ползучести бетона в условиях сухого жаркого климата //Символ науки. 2016. №. 5-2. С. 95-97.
- 34. Хамидов, А. И., Шаропов, Б. Х., & Мухтаралиева, М. А. (2022). Исследования золо-шлаковых смесей для производства строительных материалов.
- 35. Mavlonov R. A. Qurilish konstruksiyasi fanini fanlararo integratsion o'qitish asosida talabalarni kasbiy kompetentligini rivojlantirish metodikasi //Oriental renaissance: Innovative, educational, natural and social sciences. − 2021. − T. 1. − №. 9. − C. 600-604.
- 36. Абдуназаров, А., Хакимов, С., Умаров, И., Мухторалиева, М., Дедаханов, Ф., & Шаропов, Б. (2022). МЕРОПРИЯТИЯ ПО ПОВЫШЕНИЮ ЭНЕРГОЭФФЕКТИВНОСТИ СОВРЕМЕННЫХ И РЕКОНСТРУИРУЕМЫХ ЗДАНИЙ. Journal of new century innovations, 18(1), 130-134.
- 37. Sodiqjon, K., Begyor, S., Aleksandr, K., Farrukh, D., Mukhtasar, M., & Akbarjon, A. (2022). PROSPECTIVE ASPECTS OF USING SOLAR ENERGY. Journal of new century innovations, 18(1), 142-148.
- 38. Mukhtasar, M., Begyor, S., Aleksandr, K., Farrukh, D., Isroil, U., Sodiqjon, K., & Akbarjon, A. (2022). ANALYSIS OF THE EFFECTIVENESS OF THE DEVELOPMENT OF THE GERMAN EDUCATION SYSTEM IN OUR COUNTRY. Journal of new century innovations, 18(1), 168-173.
- 39. Dadakhanov, F., Sharopov, B., Umarov, I., Mukhtoraliyeva, M., Hakimov, S., Abdunazarov, A., & Kazadayev, A. (2022). PROSPECTS OF INNOVATIVE MATERIALS PRODUCTION IN THE BUILDING MATERIALS INDUSTRY. Journal of new century innovations, 18(1), 162-167.
- 40. Begyor, S., Isroil, U., Aleksandr, K., Farrukh, D., Mukhtasar, M., Sodiqjon, K., & Akbarjon, A. (2022). MEASURES TO IMPROVE THE ENERGY EFFICIENCY OF MODERN AND RECONSTRUCTED BUILDINGS. Journal of new century innovations, 18(1), 157-161.
- 41. Akhmedov, I., Khamidov, A., Shavkat, Y., Jalalov, Z., Umarov, I., & Kazadayev, A. (2022). RESEARCH OF ASH-SLAG MIXTURES FOR PRODUCTION OF

- CONSTRUCTION MATERIALS. Spectrum Journal of Innovation, Reforms and Development, 10, 85-91.
- 42. Khamidov, A., Akhmedov, I., Shavkat, Y., Jalalov, Z., Umarov, I., Xakimov, S., Aleksandr. K. (2022).APPLICATION OF **HEAT-INSULATING COMPOSITE GYPSUM** FOR **ENERGY-EFFICIENT** CONSTRUCTION. Spectrum of Journal Innovation. Reforms and Development, 10, 77-84.
- 43. Khamidov, A., Akhmedov, I., Shavkat, Y., Jalalov, Z., Umarov, I., Xakimov, S., & Abdunazarov, A. (2022). INVESTIGATION OF THE PROPERTIES OF CONCRETE BASED ON NON-FIRING ALKALINE BINDERS. Spectrum Journal of Innovation, Reforms and Development, 10, 92-100.
- 44. Akhmedov, I., Khamidov, A., Shavkat, Y., Umarov, I., & Kazadayev, A. (2022). DISTRIBUTION OF SEDIMENTS IN THE MOUNTAIN RIVER BED. Spectrum Journal of Innovation, Reforms and Development, 10, 101-106.
- 45. Шаропов, Б. Х., Хакимов, С. Р., & Рахимова, С. (2021). Оптимизация режимов гелиотеплохимической обработки золоцементных композиций. Матрица научного познания, (12-1), 115-123.
- 46. Yuvmitov, A., & Hakimov, S. R. (2021). Influence of seismic isolation on the stress-strain state of buildings. Acta of Turin Polytechnic University in Tashkent, 11(1), 71-79.
- 47. Хакимов, С., Шаропов, Б., & Абдуназаров, А. (2022). БИНО ВА ИНШООТЛАРНИНГ СЕЙСМИК МУСТАХКАМЛИГИ БЎЙИЧА ХОРИЖИЙ ДАВЛАТЛАР (РОССИЯ, ЯПОНИЯ, ХИТОЙ, АҚШ) МЕЪЁРИЙ ХУЖЖАТЛАРИ ТАХЛИЛИ. BARQARORLIK VA YETAKCHI TADQIQOTLAR ONLAYN ILMIY JURNALI, 806-809.
- 48. Хакимов, С. (2022). АКТИВ ВА ПАССИВ СЕЙСМИК УСУЛЛАРИ ХАМДА УЛАРНИНГ АСОСИЙ ВАЗИФАЛАРИ. Journal of Integrated Education and Research, 1(2), 30-36.
- 49. Ювмитов, А. С., & Хакимов, С. Р. (2020). ИССЛЕДОВАНИЕ ВЛИЯНИЯ СЕЙСМОИЗОЛЯЦИИ НА ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЗДАНИЯ. Acta of Turin Polytechnic University in Tashkent, 10(2), 14.
- 50. Yuldashev, S., & Xakimov, S. (2022). ТЕМИР ЙЎЛ ТРАНСПОРТИДАН КЕЛИБ ЧИҚАДИГАН ТЕБРАНИШЛАР ХАҚИДА. Science and innovation, 1(A5), 376-379.
- 51. Xakimov, S., & Dadaxanov, F. (2022). STATE OF HEAT CONDUCTIVITY OF WALLS OF RESIDENTIAL BUILDINGS. Science and innovation, 1(C7), 223-226.
- 52. Мавлонов Р. А. ПРОФЕССИОНАЛ ТАЪЛИМ ТИЗИМИДА ФАНЛАРАРО ИНТЕГРАЦИЯНИ АМАЛГА ОШИРИШНИНГ ДОЛЗАРБЛИГИ //Oriental renaissance: Innovative, educational, natural and social sciences. 2022. Т. 2. №. 5-2. С. 347-351.
- 53. Axmedov I.G'., Muxitdinov M., Umarov I., Ibragimova Z. Assessment of the effect of sedibles from sokhsoy river to kokand hydroelectric power station //InterConf. 2020.

- 54. Ахмедов, И. Ғ., Ортиқов, И. А., & Умаров, И. И. (2021). Дарё ўзанидаги деформацион жараёнларни бахолашда инновацион технологиялар. Фарғона политехника институти илмий-техника журнали—Фарғона, 25(1), 139-142.
- 55. Axmedov I.G'., Ortiqov I.A., Umarov I.I. Effects of water flow on the erosion processes in the channel of GIS technology // https://doi.org/10.5281/zenodo.5819579
- 56. Холмирзаев С. А. Температурные изменения в керамзитобетонных колоннах в условиях сухого жаркого климата //Журнал «Бетон и железобетон. − 2001. − №. 2.
- 57. Мусина К. Х., Холмирзаев А. А. Влияние гексахлорциклогексана на внешнесекреторную функцию поджелудочной железы //Ответственный редактор. 2014. С. 437.
- 58. Хамидов А. И. и др. Использование теплоизоляционного композиционного гипса в энергоэффективном строительстве. 2021
- 59. Хамидов, А. И., Ахмедов, И., Юсупов, Ш., & Кузибаев, Ш. (2021). Использование теплоизоляционного композиционного гипса в энергоэффективном строительстве.
- 60. Хамидов, А. И., Мухитдинов, М. Б., & Юсупов, Ш. Р. (2020). Физикомеханические свойства бетона на основе безобжиговых щелочных вяжущих, твердеющих в условиях сухого и жаркого климата.