УДК: 631.4

ВЫЯВЛЕНИЕ ЭРОЗИОННОЙ ОПАСНОСТИ ОРОШАЕМЫХ ЗЕМЕЛЬ ТАШКЕНТСКОЙ ОБЛАСТИ

Кучкарова Нодира Пазитдиновна доцент, Мусурмонова Мукамбар ассистент, Нодирова Нодира Жахонгир қизи Уришев Ислом Олимжон ўгли

Ташкентский государственный аграрный университет

Аннотация

Для выявления эрозионной опасности орошаемых земель ширката им. С.Рахимова Чиназского района Ташкентской области нами заложен 4 ключевых участков в зависимости от крутизны, длины, экспозиции склона и высеваемой культуры и проведено картирование почв в масштабе 1:1000.

На каждом участке закладывались профили, секущие последовательно все элементы склона, от вершины до шлейфа и все почвенные разности, встречающиеся на этом склоне. В створе профилей, на всех элементах рельефа, закладывались 25 опорных разрезов, характеризующих все почвенные разности на данном участке. Для выявления границ контуров отдельных почвенных разностей заложена серия полуям и прикопок. На опорных разрезах изучалась морфология почв и была произведена выемка образцов почв по генетическим горизонтам для последующего анализа.

Ключевые слова эрозионной опасность, Ключевой участок, Смыв и размыв сероземов, эрозионной опасность,

Ниже приводятся описания 4-х ключевых участков, которые наиболее характерны для полного раскрытия категорий эрозионной опасности орошаемых земель хозяйства.

Ключевой участок-1 заложен на орошаемом типичном сероземе, хлопковое поле, южная экспозиция, крутизна склона - 3-0. Длина - 150 м. Почвенный покров состоит из 3-х почвенных разностей, средне эродированный, сильноэродированный и намытый. Общая площадь - 6,45 га (рис.1).

Ключевой участок -2 заложен на орошаемом типичном сероземе, хлопковое поле, восточная экспозиция. Почвенный покров состоит из 3-х почвенных разностей: слабо эродированный и намытый. Крутизна склона на слабо эродированных частях склона - 1-0 а средне эродированных частях склона - 3-40, длина склона - 110 м (рис.2).

M 1:1000

Южная экспозиция

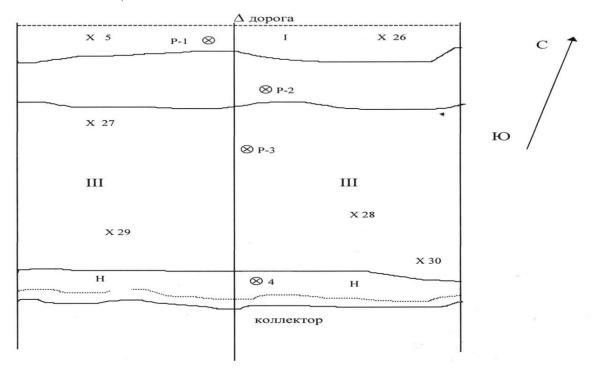


Рис-1.

Экспликация

Условные обозначения

$N_{\underline{0}}$	Название почв	Плог	цадь	
почв.		га	%	дорога
раз.				
I	Орошаемый типичный	0,7	10	коллектор
	серозем, среднесуглинистый,			
	не эродированный			
II	Орошаемый типичный	1,1	17	⊗ - почвенный
	серозем, среднесуглинистый,			разности
	слабо эродированный			
				Х - полуямы
III	Орошаемый типичный	3,9	61	△ - пикеты
	серозем, среднесуглинистый,			~ - граница
	сильноэродированный			почвенных
Н	Орошаемый типичный	0,75	12	разностей
	серозем, среднесуглинистый,			
	намытый			
	ВСЕГО	6,45	100	

M 1:2000

Восточная экспозиция

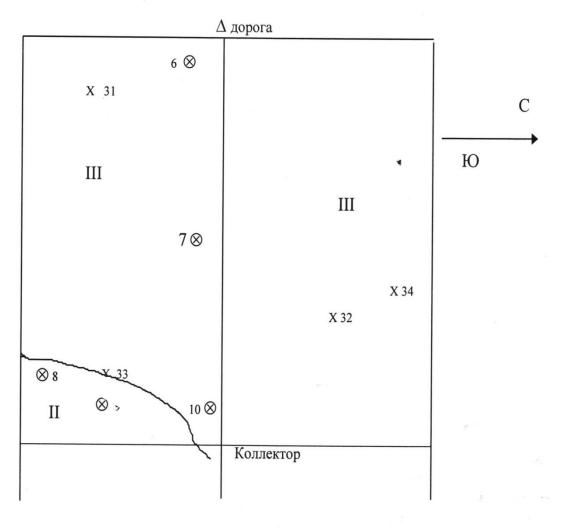


Рис.2 Экспликация

Условные обозначения

$N_{\underline{0}}$	Название почв	Плоі	цадь	обрыв
почв.		га	%	
раз.				
II	Орошаемый типичный	1,5	19	— Сбросной
	серозем, среднесуглинистый,			канал
	средне эродированный			
				пикеты
III	Орошаемый типичный	6,3	81	⊗ - основные
	серозем, среднесуглинистый,			разрности
	сильноэродированный			🛆 - граница
				почвенных разностей
	ВСЕГО	7,8	100	

M 1:2000

Южная экспозиция

Рис.3 Экспликация

Условные обозначения

$N_{\underline{0}}$	Название почв	Плоі	цадь	
почв.				дорога
раз.		га	%	
				коллектор
II	Орошаемый типичный	9,6	86	⊗ - основные
	серозем, среднесуглинистый,			разности
	средне смытой			Х - полуямы
III	Орошаемый типичный	1,6	14	△ - пикеты
	серозем, тяжел. Намытый			~ - граница
				почвенных разностей
	ВСЕГО	11,2	100	

M 1:1000

Северная экспозиция

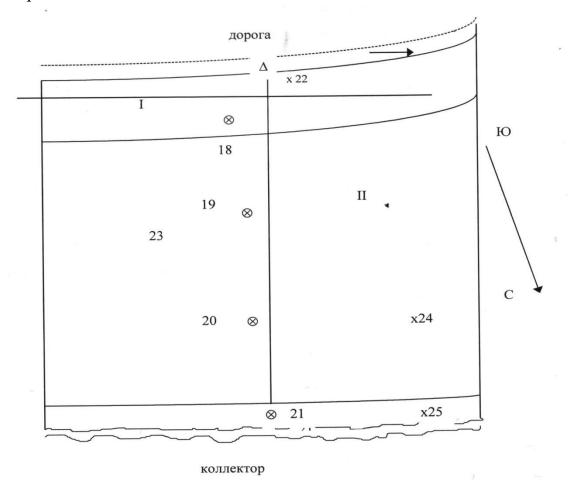


Рис.4

Экспликация

Условные обозначения

$N_{\underline{0}}$	Название почв	Площадь		дорога	
почв.		га	%	коллектор	
раз.				1	
I	Орошаемый типичный	12	22	⊗ - основные	
	серозем, среднесуглинистый,			разности	
	слабо эродированный			Х - полуямы	
II	Орошаемый типичный	3,1	57	△ - пикеты	
	серозем, среднесуглинистый,			~ - граница	
	средне эродированный			почвенных	
				разностей	
Н	Орошаемый типичный	1,1	21		
	серозем, среднесуглинистый,				
	намытый				
	ВСЕГО	5,4	100		

Ключевой участок-3 заложен на орошаемом типичном сероземе, хлопковое поле западная экспозиция, крутизна склона - 5, длина - 300 м. Почвенный покров состоит из двух почвенных разностей, общая площадь - 11,2 га (рис.3).

Ключевой участок - 4 также заложен на орошаемом типичном сероземе, хлопковое поле, северная экспозиция, крутизна 10, длина склона - 100 м. Почвенный покров состоит из одной почвенной разностей: слабо эродированный, средне эродированный, намытый. Общая площадь - 5,4 га. (Рис.4.)

На этих ключевых участках определили количество смыва почвы при поливе по бороздам в зависимости от крутизны, длины, экспозиции склона. Определение количества смыва почвы производилось с использованием водослива Томсона.

Многочисленные исследования показали, что подача на разрыхленную сухую почву поливной воды со скоростью выше критической всегда вызывает смыв почвы. Высокая эродируемость разрыхленных сероземов проявляется не только в силу генетических особенностей почв сероземного пояса (низкая водоустойчивость), но и вследствие раздельно-частичного состояния пахотного слоя и размыва сухих агрегатов и комочков защепленным воздухом при резком погружении их в поток воды. Роль защепленного воздуха состоит в том что, обладая низкой растворимостью в воде, сжимаясь при погружении агрегатов в воду, он резко увеличивает давление. Когда сила давления превосходит силу связи почвенных частиц в агрегатах, они разрываются и раздробленные частицы выталкиваются защепленным воздухом вверх, что усиливает их вынос.

Если вода, стекая по поверхности целинной почвы, сначала разъединяет связанные между собой почвенные частицы и агрегаты и только потом вызывает их смыв, то на пахотной почве основная энергия водного потока расходуется на смыв уже разъединенных частиц и агрегатов.

Смыв и размыв сероземов наиболее интенсивно протекает в начале полива. Постепенно снижаясь к концу, когда основная часть пахотного слоя почвы уже снесена. Объясняется это тем, что почвенные агрегаты и частицы нижележащих слоев успевают увлажняться капиллярно и становятся более устойчивыми к смыву и размыву. На этом основывается известное правило - начинать полив на склонах маленькой струей, а после некоторого увлажнения поверхности почвы увеличить расход воды в борозду.

Почва, как самая верхняя оболочка земной поверхности, находится в тесной взаимной связи с рельефом местности. Как известно, рельеф относит к одному из пяти основных факторов почвообразования.

Поливная вода с возвышенных элементов рельефа по наклонной плоскости склонов устраняется вниз. Следует отметить. Что часть воды передвигаются в почвогрунтовой толще. Образуя внутренний склоновый сток, который оказывает большое влияние на перераспределение по элементам рельефа продуктов гиперкинеза. Величина поверхностного и подземного стоков зависит, главным образом, от крутизны склона, состояния поверхности почвы, ее сложения, характера растительного покрова. В связи с этим на различных склонах происходит разный по величине смыв почвы.

При выявлении и оценке эрозионной опасности орошаемых земель, с нашей точки зрения, из элементов рельефа, наибольшее значение имеют крутизна, длина склона, а также их экспозиция. Значительное влияние на количество ирригационного смыва почвы оказывает также и фактор растительности.

Результаты наших исследований показывают, что при орошении по бороздам со склонов более 50% смывается больше мелкозема по сравнению со склонами, расположенными менее $2-3^0$ уклона. Из ключевого участка 3 (крутизна склона 5^0) смылось за год 103,0 т/га мелкозема, ключевого участка №1 крутизна склона 3^0) - за год 78,5 т/га, ключевого участка № 4-18,8 т/га, а из ключевого участка № 2-54,0 т/га (таблица 1.).

При определении категории эрозионной опасности исследуемых ключевых участков нами была использована «Шкала определения категории эрозионной опасности орошаемых сероземов» составленная С.М.Елюбаевым и А.А.Нурмухамедовым (1994).

Земли ключевого участка № 1 по этой шкале оказались сильно опасными, земли ключевого участка № 3 - очень сильно опасными, земли ключевого участка № 4 - слабо опасными и земли ключевого участка № 2 — средне опасным.

Для составления карты «Эрозионная опасность орошаемых земель» ширката им.С.Рахимова района Ташкентской области нами использованы результаты исследований и дополнительно к этому следующие материалы.

Методические указания по оценке и картированию эрозионноопасных орошаемых земель серозионного пояса (С.М.Елюбоев А.А. Нурмухамедов)

Почвенная карта ширката С.Рахимова Чиназского района Ташкентской области, составленная институтом «Узгипрозем» М 1:10000, 1990.

Топографические карты, М 1:10000.

Скорость почвообразования для разных типов почв различная. В почвах сероземного пояса, подстригаемых лессом, процесс почвообразования протекает достаточно интенсивно. Мы считают, что годовое количество смыва не должно превышать скорость почвообразование сероземов, равный 10.

М.Е.Бельгибаев и М.И.Долгилевич установили допустимую величину смыва сероземов, и она равна 3.24 т/га в год. К.П.Пагаянс считает, что этот показатель явна заниженный. Правильное решение этого вопроса, мы считаем, требует постановки специальных исследований для каждого типа почв с учетом всех особенностей, первую очередь хозяйственной деятельности человека. При составлении карты нами использована (Шкала определения категории эрозионной опасности орошаемых сероземов). Составления С.М.Елюбаевым, А.А.Нурмухамедовым в 1994 г (таб.2).

Таблица 1. Смыв почвы с поверхности земли, т/га

Таблица 1.

Смыв почвы с поверхности земли, т/га

№	Средня	Сумм	Экспозиц	Культура	Средн	яя величи	іна смыва	почвы		Категория
ключев	Я	a	RИ		I	II	III	IV		эрозионно
ых	крутизн	склонов	склонов		поли	поли	поли	поли	За год	й
участко	a	, M			В	В	В	В		опасности
В	склоно									
	В, В									
	град.									
1	70	100	Северная	хлопчатник	8,6	6,0	3,0	1,2	18,8	слабая
2	30	100	Восточна	хлопчатник	19,2	21,2	9,2	4,4	54,0	средняя
			Я		,	,	,		,	•
3	30	150	Южная	хлопчатник	30,2	21,5	16,3	10,5	78,5	сильная
	-0									
4	50	300	Западная	хлопчатник	33,6	37,2	18,2	14,0	103,0	очень
										сильная

Таблица 2. Шкала определения категории эрозионной опасности орошаемых сероземов (Елюбаев С.М. и Нурмухамедов А.А.,)

Категория земель по	Почвы	Почвообра	Рельес	Возможный годовой		
эрозионной опасности	ПОЧВЫ	зующие породы	Градация по уклонам поверхности	Крутизна склона, С ⁰	смыв, т/га	
1- опасности эрозии	Лугово-оазисные,	аллювиальные и	равнина	<10	<10	
нет	орошаемые, луговые, лугово-болотные,	лессовые отложения				
	серо-земно-луговые и сероземно-оазисные					
1 ^а – то же	Орошаемые сероземы, намытые	лессовые отложения	шлейф	<10	аккумуляция стока	
II - слабая опасность	Орошаемые сероземы слабо и среднесуглинистые	то же	водоразделы	1-20	10-30	
II ^а - тоже	То же	Лессовые, местами пролювиальные отложения	пологие склоны	1-20	10-30	
III – с <u>редняя</u> опасность	Орошаемые сероземы средне и сильносмытые	то же	слабопокатные склоны	2-30	30-55	
IV- сильная опасность	Орошаемые сероземы средне и сильносмытые	лессовые отложения	покатные склоны	3-50	55-85	
V- очень сильная опасность	то же	то же	сильнопокатные склоны	5-80	85-120	
VI - катастрафическая опасность	то же	то же	крутые склоны	>8	>120	

На основе приведенных материалов нами составлена карта «Эрозионная опасность орошаемых земель» ширката им. С.Рахимова Чиназского района Ташкентской области в масштабе 1:100000.

На этой карте орошаемых территория ширката разделена на 8 категорий земель по эрозионной опасности (табл.3.)

При общей площади территории хозяйства 2671,2 га неэрозионноопасные земли (равнина) занимают 286,9 га (11%), шлейфы склона (намытые почвы) 340,7 га (13%). Слабоэрозионноопасные водоразделы 204,7га (8%), слабоэрозионноопасные земли 95,0га (3%), сильноэрозионноопасные земли 1003,0 га (37%), очень сильноэрозионноопасные земли 150,5га (6%), катастрофически эрозионноопасные земли 25,0га (1%) и неоцененные земли 370,7 га (14%).

Ниже приводим общую характеристику и рекомендации по защите почв от эрозии по категориям эрозионноопасности:

I категория земель — опасности эрозии нет, занимают равнинную часть территории ширката. Почвы — орошаемые типичные сероземы тяжело и среднесуглинистые, несмытые, рельеф — спокойный.

Эти почвы более гумусированы и лучше обеспечены элементами питания по сравнению с другими категориями, спланированность поверхности полей нормальная. Крутизна склона - < 10, возможный смыв почвы допустимого (т.е. менее 10 т/га в год).

Одним из главных мероприятий для повышения производительной способности почв этой категории является введение хлопково-люцернового севооборота. Основной вид обработки почв — зяблевая вспашка, которая способствует накоплению влаги и борьбе с сорной растительностью. Особенно большой вред приносят корневые злаки — гумай, аджерик. Для борьбы с ними необходимо применять гербициды. С этой целью один раз в 3-4 года проводят разно-глубинную вспашку до 50-60 см без оборота пласта.

Для получения высокого урожая (35-40 ц/га) надо вносить дополнительно органические и минеральные удобрения.

Поливы необходимо проводить в орошаемых типичных сероземах в 4 срока по схеме 1:2:1 (первый полив – во время бутонизации, два последующих – во время цветения и плодообразования и последний полив – в начале созревания).

Іа категория земель — опасности эрозии нет, распространение на шлейфе склона, где происходит аккумуляция стока и образование намытых почв. Почвы мощные (мощность перегнойного горизонта A+B, более 75 сек), в большинстве случаев гумусированы и нормально обеспечены элементами питания, обладают некоторыми отрицательными физическими свойствами (переувлажнение, уплотнение). На некоторых участках эти почвы подвержены в различной степени засолению.

Поливы надо проводить 3 раза по схеме 1:1:1. Норма полива должна быть 3000-3500 м3/га. Основные мероприятия здесь должны быть мелиоративного характера, так как эти почвы склонны к засолению.

II категория земель - слабая опасность проявления эрозии, занимает водоразделы и верхние части склонов, почвы - орошаемый типичный серозем. Эти почвы малогумусированы и содержат недостаточное количество элементов питания.

Здесь необходимо применять мероприятия, которые рекомендованные в первой категории. Кроме того, в эти земли надо вносить 30-40 т/га навоза, 300 кг/га азотных, 125 кг/га фосфорных и 50 кг/га калийных удобрений. Поливы надо проводить 5 раз по схеме 1:3:1 из расчета 4000-4500 м3/га.

Неправильное проведение поливов способствует проявлению ирригационной эрозии. Поэтому на этих землях поливы надо производить по возможности наименьшими струями воды, необходимо также применять химические и агротехнические мероприятия, повышающие противоэрозионную устойчивость и плодородие эродированных почв.

II а категория земель - слабая опасность проявления эрозии, рельеф - пологий.

Здесь также необходимо применять те мероприятия, которые рекомендованы в первой категории и дополнительно надо провести пахоту и посев по склону или по наименьшему уклону. Наряду с этим на склонах необходимо всячески повышать и поддерживать по высоком уровне противоэрозионную устойчивость почв. Хороший эффект в этом отношении дали смачивание дна поливных борозд полимером К-9, хлореллой. Посев сидеральных культур (перко в смеси с рожью), внесение на дно поливных борозд бентонитовых глин.

III категория земель - средняя опасность проявления эрозии, рельеф - слабопокатый.

Для предотвращения эрозии почв необходимо применять все виды противоэрозионных средств, изложенные выше.

Почвы этой категории бедны органическим веществом, количество которого на преобладающей площади не превышает -0.58 % (пахотный слой). Поэтому повышение их плодородия в первую очередь связано с увеличением гумусового потенциала путем внесения навоза и различных веществ.

Одним из кардинальных путей решения проблемы борьбы с ирригационной эрозией и воспроизводства плодородия орошаемых земель является введение севооборотов. Схемы севооборотов должны быть строго дифференцировано с учетом категории эрозионной опасности земель. На сильноэрозионноопасных категориях рекомендуются схемы 4:3 или 5:4 и т.п. По мере уменьшения эрозионной опасности земель необходимо соответственно уменьшить удельный вес травяного клина в схеме севооборотов. Вместе с тем. на этих землях целесообразен посев сидеральных культур с дальнейшей запашкой их в почву.

IY - категория земель - сильная опасность проявления эрозии, рельеф покатый.

В дополнение к вышеизложенным мероприятиям здесь необходимо выравнить поверхность поливных участков путем капитальной планировки. При этом на спланированные поля в первый год необходимо вносить не менее 40 т/га навоза. Эти мероприятия, а также увеличение норм минеральных удобрений позволит без заметных потерь урожая окультуривать техногенно-нарушенных почв. Большое значение имеют органические вещества и посев на спланированных участках сидеральных культур, особенно бобовых растений.

Известно, что на полях с уклоном поверхности более 3⁻⁰ бороздковый полив даже очень малой струей воды приводит к смыву почвы. Поэтому, земли относящиеся к IY категории, целесообразно поэтапно переводить на капельное или

же подпочвенное орошение. Особенно этот способ полива эффективен на участках, где почвы подстилаются соленосными отложениями.

Y категория земель - очень сильная опасность проявления эрозии, рельеф - сильнопокатый.

Земли, относящиеся к этой категории, целесообразно использовать под посевы кормовых культур и посадку садов и виноградников. Если эти земли используются под пропашные культуры, то необходимо соблюдать все меры предосторожности во избежание нежелательных последствий ирригационной эрозии. В маловодные годы предлагаем исключить эти земли в первую очередь из сельскохозяйственного оборота с тем, чтобы экономить поливную воду.

YI категория земель - катастрофическая опасность проявления эрозии, рельеф - крутой.

Мы предложили эти земли не использовать под орошаемое земледелие, так как орошение их приводит к интенсивному развитию ирригационной и овражной эрозии и выводит земли из сельскохозяйственного оборота.

Для того, чтобы использовать эти земли, необходимо провести террасирование и после этого можно их использовать для посадки плодовых деревьев и виноградников. Н.З - неоцененные земли - целинные, залежные, усадьбы, кладбища, бугры, овраги, дороги, каналы и др.

Таблица 3. Распределение орошаемых земель ширката им. С.Рахимов по категориям эрозионной опасности.

Категория земель по эрозионной опасности	Почвы		Рельеф	породы Подвообра	Возможный смыкл/га		Площадь
		Градация по уклонам поверхности	Крутизна склона, С ⁰			га	%
l опасности эрозии нет	Орошаемые типичные сероземы, тяжелосутлинистые, несмытые.	равнина	<10	лессовые отложения	<10	286,9	11,0
1° — опасности эрозии нет	Орошаемые типичные сероземы, Среде и тяжелосуглинистые, намытые	шлейф	<l<sup>0</l<sup>	лессовые отложения	аккумуляц ия стока	297,5	11,0
II слабая опасность	Орошаемые типичные сероземы, Среднесутлинистые, слабо- среднесмытые	водоразделы	1-20	лессовые отложения	10-30	204,7	8,0
II ^а слабая опасность	Орошаемые типичные сероземы среднесутлинистые, слабосмытые	пологие склоны	1-20	лессовые отложения	10-30	194,7	7,0
III средняя опасность	Орошаемые типичные сероземы среднесуллинистые, средне – и сильносмытые	слаболокатные. склоны	2-3"	лессовые стложения	30-55	95.0	3,0
IV сильная опасность	Орошаемые типичные сероземы среднесуллинистые сильносмытые	склоны похатные	3-50	эцдоэээл кинэжолто	55-85	1046.2	39,0
V очень сильная опасность	Орошаемые типичные сероземы среднесуглинистые сильносмытые	в' склоне скленопоказае	5-8"	лессовые кинэжопто	85-120	150.5	6,0
жеская опасность VI – катастрафи-	Орошаемые типичные сероземы среднесуглинистые сильносмытые	крутые склоны	>8	лессовые отложения	>120	25.0	1,0
Неучтенные земли	Усадьба, кладбища	бугры, овраги, дороги, каналы и др.				307.7	14,0
	Итого					2671.2	100

Общеизвестно, что с увеличением величины ирригационного смыва производительная способность земель снижается, что сразу же отражается на урожайности сельскохозяйственных культур, в частности, хлопчатника

ВЫВОДЫ

- 1. Орошаемые земли низовьев реки Чирчика являются в различной степени эрозионноопасными. Составленная карта «Эрозионная опасность орошаемых земель» находящегося на этой территории ширката им. С.Рахимова Чиназского района Ташкентской области показала, что 64,0% щади хозяйства, являются эрозионноопасными. Из них 15,0% относятся к слабоэрозионноопасным, 3% к среднеэрозионноопасным, 39% к сильноэрозионноопасным, 6% к очень сильноэрозионноопасным и 1% к катастрофически эрозионноопасных.
- 2. В результате проведенных научно-исследовательских работ определена коррелятивная зависимость урожайности хлопчатника от величины ирригационного смыва почв. Коэффициент парной корреляции составил 0,97.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1.Gafurova L.A., Djalilova G.T, Kodirova D.A., Ergasheva O.X. Measures on erosion-preventive forest melioration in mountain areas of Uzbekistan// Journal of Critical Reviews Vol 7, Issue 2, 2020, pp.
 - 2. Zaslavsky M.N. Erosion management. M. High School, 1983.
- 3.Kuznetsov MS, Glazunov G.P. Erosion and soil protection, Moscow State University, M. 1996.
- 4.Makhsudov Kh.M. –Eroded serozem and ways to increase their productivity. FAN Tashkent 1981
- 5.Makhsudov Kh.M., Soil Erosion in the Arid Zone of Uzbekistan. "Fan" T., 1989
- 6. Makhsudov Kh.M., Gafurova L.A., Turapov I.T., Khanazarov A.A. Mountain and foothill soils of Uzbekistan, their genetic features and protection. III-Congress of soil scientists and agrochemists of Uzbekistan. 2000
- 7.Rustamov S.S., Makhsudov Kh.M., Yusupov Kh., Mirkhaydarova G.S. Soil erosion on rainfed dark sierozems in bass. r.Sanzar of Uzbekistan and their protection. "Materials of the international scientific-production conference" Modern problems of land management and land cadastre"., Belarus, Gorki, 2000.
- 8. Elyubaev S.M. Erosion and its role in improving soil fertility. Institute of Soil Science and Agrochemistry 70 years old. Tashkent, 1990.
- 9.Elyubaev S.M. Makhsudov Kh.M. On the method of small-scale mapping of eroded soils: Tr. NIIPA. Issue XV. Tashkent, 1978.

- 10. Kuchkarova N.P. Makhsudov Kh.M. Identification and assessment of erosion-prone irrigated typical gray soils and the purpose of their appraisal. (cotton and grain growing) journal 1999 yil No. 4 31-33 pp.
- 11.Kuchkarova N.P. Makhsudov Kh.M. Qualitative assessment of irrigated lands according to the degree of erosion. Belarus 2000
- 12.Khakberdiev O.E. Increase of anti-erosion resistance of typical serozem with the help of polycomplex TNM 1: Abstracts. Dokl. meetings. Soil pollution and its ways before disgust. Tashkent., 1992.
- 13. Nurmukhamedov A.A., Elyubaev S.M. and others Correlation dependence of cotton yield on the amount of irrigation soil washout: Abstracts. report owls. Tashkent 1992, 5-7 November.