KMDO USULI YORDAMIDA OLINGAN 〖Sb〗_2 〖Se〗_3 YUPQA QATLAMLARINING STRUKTURAVIY, OPTIK VA ELEKTROFIZIK XUSUSIYATLARI
Keywords:
Kalit so’zlar: Sb2Se3, KMDO, yupqa qatlamlar, harorat, struktura, morfologiya, rentgen difraksion ta’svir, elektr o'tkazuvchanlik, absorbsiya koeffitsienti.Abstract
Annotatsiya: Kimyoviy molekulyar dastalar olish (KMDO) metodi tomonidan Sb2Se3 yuqori sifatli kristal yupqa qatlamlari 500 ° C taglik haroratida binar birikmaning Sb2Se3 va Se elementining alohida manbalaridan olindi. Sb2Se3 yupqa qatlamlarining morfologik, strukturaviy, optik va elektrofizik xossalariga selen manba haroratining ta'siri o'rganildi. Elektron mikroskop tasvirlari va rentgen difraksion analiz ma'lumotlarini asosida olingan barcha yupqa qatlamlar ortorombik polikristal strukturaga va kristall o’lchamlari 5-10 mkm ga ega ekanligi ma'lum bo'ldi. Yupqa qatlamlarning elektr o’tkazuvchanligi Sb/Se atomlari konsentratsiyasi nisbatiga qarab 1,03 •10-5÷ 4,13•10-5 (Om• sm)-1 oraliqda bo’lishi aniqlandi.
References
Adabiyotlar:
Martin A. Green, Ewan D. Dunlop, Jochen Hohl-Ebinger, Masahiro Yoshita, Nikos Kopidakis, Xiaojing Hao. Solar cell efficiency tables (version56), Prog Photovolt Res Appl. 2020, 28, 629–638.
Rühle, S., Tabulated values of the Shockley–Queisser limit for single junction solar cells, Sol. Energy, 2016, vol. 130, pp. 139–147. https://doi.org/10.1016/j.solener.2016.02.015.
Razykov, T.M., Ferekides, C.S., et al., Solar photovoltaic electricity: Current status and future prospects, Sol. Energy, 2011, vol. 85, pp. 1580–1608.
Dhere, N.G., Scale-up issues of CIGS thin film PV modules, Sol. Energy Mater. Sol. Cells, 2011, vol. 95no. 1, pp. 277–280.
Cao Yun, Wang Chunrui, Li Bin, et al., Fabrication and characterization of Cu2ZnSnSxSe4-x solid solution nanocrystallines, Jpn. J. Appl. Phys., 2011, vol. 50, art. id. 125001.
. Xiaomin Wang, Rongfeng Tang, Chunyan Wu, Development of antimony sulfide–selenide Sb2(S, Se)3 -based solar cells. Journal of Energy Chemistry 27 (2018) 713–721.
Xiaomin Wang, Rongfeng Tang, Chunyan Wu, et al., Development of antimony sulfide–selenide Sb2(S,Se)3 -based solar cells. Journal of Energy Chemistry 27 (2018) 713–721.
Abdurashid Mavlonov, Takhir Razykov, Fazal Raziq, et al., A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells. Solar Energy Volume 201, 1 May 2020, Pages 227-246.
Mamta, Yogesh Singh, K.K. Maurya, et al., A review on properties, applications, and deposition techniques of antimony selenide. Solar Energy Materials & Solar Cells 230 (2021) 111223.
Т. Razykov, А. Mavlonov, Fazal Raziqa, Takahito Nishimurad, Haoming Weie, Andriy Zakutayev, Takashi Minemotoc, Xiaotao Zua , Sean Lig , Liang Qiaoa. А review of Sb2Se3 photovoltaic absorber materials and thin-fi1m solar cells. Solar Energy, v. 201 рр.227-246.
ХМ. wang, R.F. Tang, Y.W. Yin, Т. Chen, Interfacial engineering for high ef6ciency solution processed Sb2S3 solar cells, Sol. Energy Mater. Sol. Cells 189 (2019).
RazykovТ.М. Chemical molecular beam deposition of II-VI binary and temary compound fi1ms in gas f10w. Applied Surface Science, 1991, v.48/49, N1, Р.Р.89-92